COVID-19 short-term forecasts Deaths 2020-05-09


Disclaimer

  • Forecasts produced by Jennie Castle, Jurgen Doornik, and David Hendry, researchers at the University of Oxford. These are our forecasts, and should not be considered official forecasts from, or endorsed by, any of: University of Oxford, Oxford Martin School, Nuffield College, or Magdalen College.
  • These forecasts are short term time-series extrapolations of the data. They are not based on epidemiological modelling or simulations. The documentation that is provided is still in progress and not peer reviewed. All forecasts are uncertain: their success can only be determined afterwards. Many mitigation strategies are in place, which, if successful, invalidate our forecasts. An explanation of our methods is provided below.

Recent changes

[2020-03-24] Our forecasts are starting to overestimate in some cases. This was always expected to happen when the increase starts to slow down. Scenario forecasts that are based on what happened in China earlier this year, but only for Italy and Spain sofar.
[2020-03-26] Scenario forecasts that are based on what happened in China earlier this year, only for Italy.
[2020-03-31] Scenario forecasts, based on what happened in China earlier this year, are presented for several countries (line marked with x). Created more plausible 90% confidence bands (dotted line in same colour).
[2020-04-02] Now including more US States, based on New York Times data. And the world.
[2020-04-06] Added a post hoc estimate of the peak number of cases. This needs at least three confirmed observations (four for deaths) after the event. It is based on the averaged smooth trend, and can change later or be a local peak. It is marked with a vertical line with the date label, or a date with left arrow in the bottom left corner of the graph. This is backported to 2020-04-04.
[2020-04-08] Minor correction to peak estimates. Added table with scenario forecasts.
[2020-04-09] Added table with estimated peak dates (if happened) and dates to and since the peak. Note that this can be a local peak, and subsequent re-acceleration (or data revisions) can result in a new peak later.
[2020-04-10] Updated documentation with better description of short-term estimates and peak determination.
[2020-04-16] Added scenario forecasts to all graphs now. This would now be the preferred forecast for most.
This is the first time with a peak in confirmed UK cases (also for deaths, but this is uncertain because it is at the same date).
[2020-04-17] Bird and Nielsen look into nowcasting death counts in England.
[2020-04-24] A summary of our work on short-term COVID-19 forecasting appeared as a voxeu.
[2020-04-27] Our short-term COVID-19 forecasting paper is now available as Nuffield Economics Discussion Paper 2020-W06.
A small adjustment has been made to the scenario forecast methodology, and will be documented shortly.
[2020-04-29] See our blog entry at the International Institute of Forecasters.
US history of death counts revised in Johns Hopkins/CSSE data.
UK death counts have been revised to include the deaths in care homes. In the Johns Hopkins/CSSE data set, which we use, the entire history has been revised. So forecasts made up to 2020-04-29 cannot be compared to later outcomes. In the ECDC data set only the last observation has changed, causing a jump in the series.
[2020-05-06] The New York Times is in the process of redefining its US state data. Unfortunately, at the moment only the last observation has changed (e.g New York deaths jumped from 19645 on 2020-05-05 to 25956 a day later). This means the data is currently useless; however it does bring it close to the Johns Hopkins/CSSE count (25626 on 2020-05-06). The aggregate US count is based on JH/CSSE so unaffected. We now use Johns Hopkins/CSSE US state data, including all states with sufficient counts. So the new forecasts cannot be compared to those previously.
A minor change is that we show the graph without scenario forecast if no peak has been detected yet.

Further information

  • We believe these forecasts fill a useful gap in the short run. They give an indication of what is likely to happen in the next few days, removing some aspect of surprise. Moreover, a noticeable drop in comparison to the extrapolations could be an indication that the implemented policies are having some impact. It is difficult to understand exponential growth. We hope that these forecasts may help to convince viewers to adhere to the policies implemented by their respective governments, and keep all arguments factual and measured.
  • We use the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering. This is updated daily, but we tend to update our forecasts only every other day.
    US state data as of 2020-03-28 is courtesy of the New York Times.
  • We can only provide forecasts of what is measured. If confirmed cases are an underestimate of actual cases, then our forecasts will also be underestimates. No other epidemiological data is used. Data definition and collection differs between countries and may change over time.
  • We will update the methodology as we learn what is happening in the next few days or weeks. Once the number of cases levels off, there is no need to provide these forecasts anymore.
  • Countries where the counts are very low or stable have been omitted.
  • The graphs have dates on the horizontal axis (yyyy-mm-dd) and cumulative counts on the vertical axis. They show
    1. bold dark grey line (with circles): observed counts (Johns Hopkins CSSE);
    2. many light grey lines (with open circles): forecasts using different model settings and starting up to four periods back;
    3. red line (with open circles): single forecasts path using default model settings;
    4. black line (with crosses): average of all forecasts, recentered on the last observation;
    5. thin green lines: some indication of uncertainty around the red forecasts, but we do not know how reliable that is.
    Both the red line forecasts and the black lines are also given in the tables above. These forecasts differ, we are currently inclined to use the average forecasts.
  • The forecasts are constructed as follows:
    1. An overall `trend' is extracted by taking a window of the data at a time. In each window we draw `straight lines' which are selected using an automatic econometric procedure (`machine learning'). All straight lines are collected and averaged, giving the trend.
    2. Forecasts are made using the estimated trend, but we note that this must be done carefully, because simply extrapolating the flexible insample trend would lead to wildly fluctuating forecast. We use the `Cardt' method, which has been found to work well in other settings.
    3. Residuals from the trend are also forecast, and combined with trend forecasts into an overall forecast.
  • Scenario forecasts are constructed very differently: smooth versions of the Chinese experience are matched at different lag lengths with the path of each country. This probably works best from the peak, or the slowdown just before (but we include it for the UK nonetheless).
  • The forecast evaluation shows past forecasts, together with the outcomes (in the grey line with circles).
  • EU-BS is Estonia, Latvia, and Lithuania together.
  • This paper describes the methodology and gives further references. Also available as Nuffield Economics Discussion Paper 2020-W06. Still preliminary is the documentation of the medium term forecasts.

Deaths count average forecast Latin America (bold black line in graphs) 2020-05-10 to 2020-05-16

DateArgentinaBrazilChileColombiaDominican RepublicEcuadorMexicoPanamaPeru
2020-05-09 300 10656 304 445 385 1717 3353 237 1814
2020-05-10 310 11200 310 460 390 1740 3590 240 1880
2020-05-11 320 11900 310 480 400 1790 3840 250 1980
2020-05-12 330 12700 320 490 410 1830 4110 260 2070
2020-05-13 340 13500 330 510 410 1880 4400 270 2170
2020-05-14 340 14400 330 530 420 1930 4710 280 2280
2020-05-15 350 15400 340 550 430 1980 5030 290 2390
2020-05-16 370 16400 350 570 440 2040 5390 300 2510

Deaths count forecast Latin America (bold red line in graphs) 2020-05-10 to 2020-05-16

DateArgentinaBrazilChileColombiaDominican RepublicEcuadorMexicoPanamaPeru
2020-05-09 300 10656 304 445 385 1717 3353 237 1814
2020-05-10 310 11500 310 460 390 1730 3640 250 1900
2020-05-11 320 12400 320 480 400 1740 3920 260 1990
2020-05-12 320 13400 320 490 410 1750 4230 270 2090
2020-05-13 330 14400 330 510 410 1760 4550 280 2180
2020-05-14 340 15500 340 530 420 1780 4890 290 2280
2020-05-15 350 16600 350 540 420 1790 5260 300 2390
2020-05-16 360 17900 350 560 430 1800 5660 310 2500

Peak increase in estimated trend of Deaths in Latin America 2020-05-09

ArgentinaBrazilChileColombiaDominican RepublicEcuadorMexicoPanamaPeru
Peak date04-24 --05-0205-0504-1205-02 -- -- --
Peak daily increment 10 11 18 16 166
Days from 100 to peak 10 16 23 4 30
Days from peak/2 to peak 31 35 37 18 31
Days since peak 15 7 4 27 7

Initial visual evaluation of forecasts of Deaths