COVID-19 short-term forecasts Deaths 2020-10-15 Latin American Countries


General information

  • Forecasts produced by Jennie Castle, Jurgen Doornik, and David Hendry, researchers at the University of Oxford. These are our forecasts, and should not be considered official forecasts from, or endorsed by, any of: University of Oxford, Oxford Martin School, Nuffield College, or Magdalen College.
  • These forecasts are short term time-series extrapolations of the data. They are not based on epidemiological modelling or simulations. All forecasts are uncertain: their success can only be determined afterwards. Many mitigation strategies are in place, which, if successful, invalidate our forecasts. An explanation of our methods is provided below.
  • A list of notes is below. The most recent note:
    [2020-10-11]Short-term forecasting of the coronavirus pandemic (with Jennie Castle and David Hendry) is now in press at the International Journal of Forecasting.

Peak increase in estimated trend of Deaths in Latin America 2020-10-15

ArgentinaBoliviaBrazilChileColombiaCosta RicaDominican RepublicEcuadorEl SalvadorGuatemalaHaitiHondurasMexicoPanamaParaguayPeruVenezuela
Peak date (mm-dd)10-0109-0707-2107-1708-23 --09-0309-0708-0706-0507-1007-3010-0507-2309-2707-2309-17
Peak daily increment 2455 1427 1065 785 318 22 3440 11 43 6 35 1774 28 20 2947 9
Days since peak 14 38 86 90 53 42 38 69 132 97 77 10 84 18 84 28
Last total 25342 8407 152460 13434 28457 1159 2189 12306 908 3453 231 2552 85285 2529 1150 33577 720
Last daily increment 421 30 713 19 151 25 3 42 4 23 0 19 387 10 19 158 6
Last week 2117 145 2821 214 962 104 24 131 27 97 1 60 1788 55 105 479 36
Previous peak date -- -- -- -- -- --04-1205-10 -- -- -- -- -- -- -- -- --
Previous peak daily increment 22 167
Low between peaks 4 14

Deaths count forecast Latin America (bold red line in graphs) 2020-10-16 to 2020-10-22

DateArgentinaBoliviaBrazilChileColombiaCosta RicaDominican RepublicEcuadorEl SalvadorGuatemalaHondurasMexicoPanamaParaguayPeruVenezuela
2020-10-15 25342 8407 152460 13434 28457 1159 2189 12306 908 3453 2552 85285 2529 1150 33577 720
2020-10-16 25870 8468 153400 13520 28640 1175 2194 12350 912 3453 2565 85520 2539 1169 33680 726
2020-10-17 26160 8502 154100 13580 28800 1195 2198 12400 916 3465 2578 85690 2548 1187 33780 732
2020-10-18 26400 8528 154300 13620 28960 1195 2203 12440 920 3480 2590 85790 2557 1206 33870 738
2020-10-19 26700 8548 154500 13680 29110 1227 2207 12490 924 3483 2602 86010 2567 1224 33960 744
2020-10-20 27140 8580 155000 13700 29270 1243 2212 12530 928 3499 2614 86500 2576 1242 34050 749
2020-10-21 27510 8612 155600 13730 29420 1256 2217 12570 932 3517 2627 86980 2585 1261 34140 755
2020-10-22 27980 8649 156400 13770 29580 1276 2221 12610 935 3535 2639 87450 2595 1279 34230 761

Deaths count average forecast Latin America (bold black line in graphs) 2020-10-16 to 2020-10-22

DateArgentinaBoliviaBrazilChileColombiaCosta RicaDominican RepublicEcuadorEl SalvadorGuatemalaHondurasMexicoPanamaParaguayPeruVenezuela
2020-10-15 25342 8407 152460 13434 28457 1159 2189 12306 908 3453 2552 85285 2529 1150 33577 720
2020-10-16 25740 8441 152900 13470 28680 1177 2193 12310 912 3468 2564 85730 2538 1169 33660 726
2020-10-17 26090 8476 153500 13520 28840 1196 2198 12350 917 3480 2577 85990 2548 1189 33750 732
2020-10-18 26410 8509 153800 13570 29000 1205 2202 12390 922 3493 2590 86130 2557 1209 33830 738
2020-10-19 26760 8541 154100 13620 29150 1230 2207 12420 926 3500 2602 86370 2566 1229 33910 744
2020-10-20 27200 8580 154700 13650 29300 1248 2212 12460 931 3513 2615 87010 2575 1250 33990 751
2020-10-21 27610 8620 155300 13690 29470 1266 2217 12490 936 3527 2628 87520 2585 1271 34070 757
2020-10-22 28060 8661 156000 13750 29570 1285 2221 12590 940 3538 2642 88060 2594 1292 34160 764

Further information

  • We believe these forecasts fill a useful gap in the short run. They give an indication of what is likely to happen in the next few days, removing some aspect of surprise. Moreover, a noticeable drop in comparison to the extrapolations could be an indication that the implemented policies are having some impact. It is difficult to understand exponential growth. We hope that these forecasts may help to convince viewers to adhere to the policies implemented by their respective governments, and keep all arguments factual and measured.
  • We use the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering. This is updated daily, but we tend to update our forecasts only every other day.
    US state data as of 2020-03-28 is courtesy of the New York Times.
  • We can only provide forecasts of what is measured. If confirmed cases are an underestimate of actual cases, then our forecasts will also be underestimates. No other epidemiological data is used. Data definition and collection differs between countries and may change over time.
  • We will update the methodology as we learn what is happening in the next few days or weeks. Once the number of cases levels off, there is no need to provide these forecasts anymore.
  • Countries where the counts are very low or stable have been omitted.
  • The graphs have dates on the horizontal axis (yyyy-mm-dd) and cumulative counts on the vertical axis. They show
    1. bold dark grey line (with circles): observed counts (Johns Hopkins CSSE);
    2. many light grey lines (with open circles): forecasts using different model settings and starting up to four periods back;
    3. red line (with open circles): single forecasts path using default model settings;
    4. black line (with crosses): average of all forecasts, recentered on the last observation;
    5. thin green lines: some indication of uncertainty around the red forecasts, but we do not know how reliable that is.
    Both the red line forecasts and the black lines are also given in the tables above. These forecasts differ, we are currently inclined to use the average forecasts.
  • The forecasts are constructed as follows:
    1. An overall `trend' is extracted by taking a window of the data at a time. In each window we draw `straight lines' which are selected using an automatic econometric procedure (`machine learning'). All straight lines are collected and averaged, giving the trend.
    2. Forecasts are made using the estimated trend, but we note that this must be done carefully, because simply extrapolating the flexible insample trend would lead to wildly fluctuating forecast. We use the `Cardt' method, which has been found to work well in other settings.
    3. Residuals from the trend are also forecast, and combined with trend forecasts into an overall forecast.
  • Scenario forecasts are constructed very differently: smooth versions of the Chinese experience are matched at different lag lengths with the path of each country. This probably works best from the peak, or the slowdown just before (but we include it for the UK nonetheless).
  • The forecast evaluation shows past forecasts, together with the outcomes (in the grey line with circles).
  • EU-BS is Estonia, Latvia, and Lithuania together.
  • This paper describes the methodology and gives further references. Also available as Nuffield Economics Discussion Paper 2020-W06. Still preliminary is the documentation of the medium term forecasts.

Recent changes and notes

[2020-10-11]Short-term forecasting of the coronavirus pandemic (with Jennie Castle and David Hendry) is now in press at the International Journal of Forecasting.
[2020-10-10]Temporarily removed forecasts from the Chinese scenarios, while investigating possibility to use own history from the first wave.
Added information on the previous peak (if present) to the peak tables.
Local forecasts for England: now dropping last four observations.
[2020-07-01] Modified the short-term model to allow for (slowly changing) seasonality. Many countries show clear seasonality after the initial period, likely caused by institutional factors regarding data collection. This seasonality was also getting in the way of peak detection. As a consequence estimates of the peak date may have changed for countries with strong seasonality.
Added forecasts of cumulative confirmed cases for lower tier local authorities of England. The data is available from 2020-07-02 including all tests (pillar one and two). Only authorities with more than 5 cases in the previous week are included.
[2020-06-29] Tables in April included the world, but not the world as we know it (double counting China and the US). So removed the world from those old tables.
Why short-term forecasts can be better than models for predicting how pandemics evolve just appeared at The Conversation.
Thursday 2 July webinar at the FGV EESP - São Paolo School of Economics. This starts at 16:00 UK time (UTC+01:00) and streamed here.
[2020-06-24] Research presentation on short-term COVID-19 forecasting on 26 June (14:00 UK time) at the Quarterly Forecasting Forum of the IIF UK Chapter.
[2020-06-06] Removed Brazil from yesterday's forecasts (only; last observation 2020-06-05).
[2020-06-04] Data issues with confirmed cases for France.
Added an appendix to the short term paper with further forecast comparisons for European and Latin American countries.
Both Sweden and Iran have lost their peak in confirmed cases. For Sweden the previous peak was on 24 April (daily peak of 656 cases), for Iran it was on 31 March (peak of 3116). For Iran this looks like a second wave, with increasing daily counts for the last four weeks. For Sweden this is a sudden jump in confirmed cases in the last two days, compared to a fairly steady weekly pattern over the previous six weeks.
[2020-05-20] Problem with UK confirmed cases: negative daily count. This makes the forecasts temporarily unreliable.
Updated the second paper.
[2020-05-18] Minor fixes to the improved version of scenario forecasting, backported to 2020-05-13.
[2020-05-13] We now omit countries with fewer than 200 confirmed cases in the last week (25 for deaths).
The short-term paper has some small updates, including further comparisons with other models.
Data for Ecuador are not reliable enough for forecasting.
Switched to an improved version of scenario forecasting.
[2020-05-06] The New York Times is in the process of redefining its US state data. Unfortunately, at the moment only the last observation has changed (e.g New York deaths jumped from 19645 on 2020-05-05 to 25956 a day later). This means the data is currently useless; however it does bring it close to the Johns Hopkins/CSSE count (25626 on 2020-05-06). The aggregate US count is based on JH/CSSE so unaffected. We now use Johns Hopkins/CSSE US state data, including all states with sufficient counts. So the new forecasts cannot be compared to those previously.
A minor change is that we show the graph without scenario forecast if no peak has been detected yet.
[2020-04-29] See our blog entry at the International Institute of Forecasters.
US history of death counts revised in Johns Hopkins/CSSE data.
UK death counts have been revised to include the deaths in care homes. In the Johns Hopkins/CSSE data set, which we use, the entire history has been revised. So forecasts made up to 2020-04-29 cannot be compared to later outcomes. In the ECDC data set only the last observation has changed, causing a jump in the series.
[2020-04-27] Our short-term COVID-19 forecasting paper is now available as Nuffield Economics Discussion Paper 2020-W06.
A small adjustment has been made to the scenario forecast methodology, and will be documented shortly.
[2020-04-24] A summary of our work on short-term COVID-19 forecasting appeared as a voxeu.
[2020-04-17] Bird and Nielsen look into nowcasting death counts in England.
[2020-04-16] Added scenario forecasts to all graphs now. This would now be the preferred forecast for most.
This is the first time with a peak in confirmed UK cases (also for deaths, but this is uncertain because it is at the same date).
[2020-04-10] Updated documentation with better description of short-term estimates and peak determination.
[2020-04-09] Added table with estimated peak dates (if happened) and dates to and since the peak. Note that this can be a local peak, and subsequent re-acceleration (or data revisions) can result in a new peak later.
[2020-04-08] Minor correction to peak estimates. Added table with scenario forecasts.
[2020-04-06] Added a post hoc estimate of the peak number of cases. This needs at least three confirmed observations (four for deaths) after the event. It is based on the averaged smooth trend, and can change later or be a local peak. It is marked with a vertical line with the date label, or a date with left arrow in the bottom left corner of the graph. This is backported to 2020-04-04.
[2020-04-02] Now including more US States, based on New York Times data.
[2020-03-31] Scenario forecasts, based on what happened in China earlier this year, are presented for several countries (line marked with x). Created more plausible 90% confidence bands (dotted line in same colour).
[2020-03-26] Scenario forecasts that are based on what happened in China earlier this year, only for Italy.
[2020-03-24] Our forecasts are starting to overestimate in some cases. This was always expected to happen when the increase starts to slow down. Scenario forecasts that are based on what happened in China earlier this year, but only for Italy and Spain sofar.

Initial visual evaluation of forecasts of Deaths