COVID-19 short-term forecasts Deaths 2020-11-01 Latin American Countries


General information

  • Forecasts produced by Jennie Castle, Jurgen Doornik, and David Hendry, researchers at the University of Oxford. These are our forecasts, and should not be considered official forecasts from, or endorsed by, any of: University of Oxford, Oxford Martin School, Nuffield College, or Magdalen College.
  • These forecasts are short term time-series extrapolations of the data. They are not based on epidemiological modelling or simulations. All forecasts are uncertain: their success can only be determined afterwards. Many mitigation strategies are in place, which, if successful, invalidate our forecasts. An explanation of our methods is provided below.
  • A list of notes is below. The most recent note:
    [2020-10-11]Short-term forecasting of the coronavirus pandemic (with Jennie Castle and David Hendry) is now in press at the International Journal of Forecasting.

Peak increase in estimated trend of Deaths in Latin America 2020-11-01

ArgentinaBoliviaBrazilChileColombiaCosta RicaDominican RepublicEcuadorEl SalvadorGuatemalaHaitiHondurasJamaicaMexicoPanamaParaguayPeruVenezuela
Peak date (mm-dd)10-0109-0707-2107-1708-23 --09-0309-0708-0706-0507-1007-30 --10-0507-2309-2607-2309-20
Peak daily increment 2393 1427 1065 785 318 22 3440 11 43 6 35 1702 28 20 2947 9
Days since peak 31 55 103 107 70 59 55 86 149 114 94 27 101 36 101 42
Last total 31140 8731 160074 14247 31515 1385 2249 12684 979 3738 232 2675 208 91895 2706 1418 34476 801
Last daily increment 138 6 190 40 201 0 4 14 4 9 0 6 2 142 6 14 65 3
Last week 1839 73 2677 244 1167 73 24 111 26 87 0 42 16 2724 68 85 327 24
Previous peak date -- -- -- -- -- --04-1205-10 -- -- -- -- -- -- -- -- -- --
Previous peak daily increment 22 167
Low between peaks 4 14

Deaths count forecast Latin America (bold red line in graphs) 2020-11-02 to 2020-11-08

DateArgentinaBoliviaBrazilChileColombiaCosta RicaDominican RepublicEcuadorEl SalvadorGuatemalaHondurasMexicoPanamaParaguayPeruVenezuela
2020-11-01 31140 8731 160074 14247 31515 1385 2249 12684 979 3738 2675 91895 2706 1418 34476 801
2020-11-02 31720 8748 160500 14310 31690 1411 2252 12710 983 3758 2682 91910 2716 1433 34550 804
2020-11-03 32100 8764 161000 14340 31850 1425 2255 12740 987 3770 2690 92460 2725 1448 34620 807
2020-11-04 32420 8780 161500 14350 32020 1435 2258 12760 991 3787 2696 92920 2735 1463 34680 810
2020-11-05 32750 8795 162000 14420 32190 1450 2261 12780 995 3805 2703 93230 2744 1478 34750 813
2020-11-06 33090 8811 162600 14470 32350 1462 2264 12810 999 3817 2710 93710 2754 1492 34810 815
2020-11-07 33320 8826 162900 14530 32520 1474 2267 12830 1003 3833 2716 94140 2763 1507 34880 818
2020-11-08 33480 8841 163000 14570 32680 1475 2270 12850 1007 3847 2723 94340 2773 1522 34940 821

Deaths count average forecast Latin America (bold black line in graphs) 2020-11-02 to 2020-11-08

DateArgentinaBoliviaBrazilChileColombiaCosta RicaDominican RepublicEcuadorEl SalvadorGuatemalaHondurasMexicoPanamaParaguayPeruVenezuela
2020-11-01 31140 8731 160074 14247 31515 1385 2249 12684 979 3738 2675 91895 2706 1418 34476 801
2020-11-02 31440 8743 160400 14300 31700 1406 2253 12700 983 3747 2681 92130 2715 1433 34530 805
2020-11-03 31790 8763 160800 14330 31890 1423 2256 12720 987 3761 2688 92720 2724 1449 34580 810
2020-11-04 32130 8786 161300 14360 32060 1437 2259 12740 991 3778 2695 93200 2734 1465 34630 816
2020-11-05 32460 8809 161700 14410 32230 1455 2261 12760 996 3795 2703 93510 2743 1481 34690 821
2020-11-06 32820 8833 162200 14460 32400 1471 2264 12780 1000 3809 2710 94130 2753 1497 34730 826
2020-11-07 33140 8856 162600 14510 32580 1489 2267 12800 1004 3826 2717 94490 2762 1514 34790 831
2020-11-08 33450 8879 162900 14550 32740 1499 2269 12820 1009 3847 2725 94620 2772 1531 34840 836

Further information

  • We believe these forecasts fill a useful gap in the short run. They give an indication of what is likely to happen in the next few days, removing some aspect of surprise. Moreover, a noticeable drop in comparison to the extrapolations could be an indication that the implemented policies are having some impact. It is difficult to understand exponential growth. We hope that these forecasts may help to convince viewers to adhere to the policies implemented by their respective governments, and keep all arguments factual and measured.
  • We use the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering. This is updated daily, but we tend to update our forecasts only every other day.
    US state data as of 2020-03-28 is courtesy of the New York Times.
  • We can only provide forecasts of what is measured. If confirmed cases are an underestimate of actual cases, then our forecasts will also be underestimates. No other epidemiological data is used. Data definition and collection differs between countries and may change over time.
  • We will update the methodology as we learn what is happening in the next few days or weeks. Once the number of cases levels off, there is no need to provide these forecasts anymore.
  • Countries where the counts are very low or stable have been omitted.
  • The graphs have dates on the horizontal axis (yyyy-mm-dd) and cumulative counts on the vertical axis. They show
    1. bold dark grey line (with circles): observed counts (Johns Hopkins CSSE);
    2. many light grey lines (with open circles): forecasts using different model settings and starting up to four periods back;
    3. red line (with open circles): single forecasts path using default model settings;
    4. black line (with crosses): average of all forecasts, recentered on the last observation;
    5. thin green lines: some indication of uncertainty around the red forecasts, but we do not know how reliable that is.
    Both the red line forecasts and the black lines are also given in the tables above. These forecasts differ, we are currently inclined to use the average forecasts.
  • The forecasts are constructed as follows:
    1. An overall `trend' is extracted by taking a window of the data at a time. In each window we draw `straight lines' which are selected using an automatic econometric procedure (`machine learning'). All straight lines are collected and averaged, giving the trend.
    2. Forecasts are made using the estimated trend, but we note that this must be done carefully, because simply extrapolating the flexible insample trend would lead to wildly fluctuating forecast. We use the `Cardt' method, which has been found to work well in other settings.
    3. Residuals from the trend are also forecast, and combined with trend forecasts into an overall forecast.
  • Scenario forecasts are constructed very differently: smooth versions of the Chinese experience are matched at different lag lengths with the path of each country. This probably works best from the peak, or the slowdown just before (but we include it for the UK nonetheless).
  • The forecast evaluation shows past forecasts, together with the outcomes (in the grey line with circles).
  • EU-BS is Estonia, Latvia, and Lithuania together.
  • This paper describes the methodology and gives further references. Also available as Nuffield Economics Discussion Paper 2020-W06. Still preliminary is the documentation of the medium term forecasts.

Recent changes and notes

[2020-10-11]Short-term forecasting of the coronavirus pandemic (with Jennie Castle and David Hendry) is now in press at the International Journal of Forecasting.
[2020-10-10]Temporarily removed forecasts from the Chinese scenarios, while investigating possibility to use own history from the first wave.
Added information on the previous peak (if present) to the peak tables.
Local forecasts for England: now dropping last four observations.
[2020-07-01] Modified the short-term model to allow for (slowly changing) seasonality. Many countries show clear seasonality after the initial period, likely caused by institutional factors regarding data collection. This seasonality was also getting in the way of peak detection. As a consequence estimates of the peak date may have changed for countries with strong seasonality.
Added forecasts of cumulative confirmed cases for lower tier local authorities of England. The data is available from 2020-07-02 including all tests (pillar one and two). Only authorities with more than 5 cases in the previous week are included.
[2020-06-29] Tables in April included the world, but not the world as we know it (double counting China and the US). So removed the world from those old tables.
Why short-term forecasts can be better than models for predicting how pandemics evolve just appeared at The Conversation.
Thursday 2 July webinar at the FGV EESP - São Paolo School of Economics. This starts at 16:00 UK time (UTC+01:00) and streamed here.
[2020-06-24] Research presentation on short-term COVID-19 forecasting on 26 June (14:00 UK time) at the Quarterly Forecasting Forum of the IIF UK Chapter.
[2020-06-06] Removed Brazil from yesterday's forecasts (only; last observation 2020-06-05).
[2020-06-04] Data issues with confirmed cases for France.
Added an appendix to the short term paper with further forecast comparisons for European and Latin American countries.
Both Sweden and Iran have lost their peak in confirmed cases. For Sweden the previous peak was on 24 April (daily peak of 656 cases), for Iran it was on 31 March (peak of 3116). For Iran this looks like a second wave, with increasing daily counts for the last four weeks. For Sweden this is a sudden jump in confirmed cases in the last two days, compared to a fairly steady weekly pattern over the previous six weeks.
[2020-05-20] Problem with UK confirmed cases: negative daily count. This makes the forecasts temporarily unreliable.
Updated the second paper.
[2020-05-18] Minor fixes to the improved version of scenario forecasting, backported to 2020-05-13.
[2020-05-13] We now omit countries with fewer than 200 confirmed cases in the last week (25 for deaths).
The short-term paper has some small updates, including further comparisons with other models.
Data for Ecuador are not reliable enough for forecasting.
Switched to an improved version of scenario forecasting.
[2020-05-06] The New York Times is in the process of redefining its US state data. Unfortunately, at the moment only the last observation has changed (e.g New York deaths jumped from 19645 on 2020-05-05 to 25956 a day later). This means the data is currently useless; however it does bring it close to the Johns Hopkins/CSSE count (25626 on 2020-05-06). The aggregate US count is based on JH/CSSE so unaffected. We now use Johns Hopkins/CSSE US state data, including all states with sufficient counts. So the new forecasts cannot be compared to those previously.
A minor change is that we show the graph without scenario forecast if no peak has been detected yet.
[2020-04-29] See our blog entry at the International Institute of Forecasters.
US history of death counts revised in Johns Hopkins/CSSE data.
UK death counts have been revised to include the deaths in care homes. In the Johns Hopkins/CSSE data set, which we use, the entire history has been revised. So forecasts made up to 2020-04-29 cannot be compared to later outcomes. In the ECDC data set only the last observation has changed, causing a jump in the series.
[2020-04-27] Our short-term COVID-19 forecasting paper is now available as Nuffield Economics Discussion Paper 2020-W06.
A small adjustment has been made to the scenario forecast methodology, and will be documented shortly.
[2020-04-24] A summary of our work on short-term COVID-19 forecasting appeared as a voxeu.
[2020-04-17] Bird and Nielsen look into nowcasting death counts in England.
[2020-04-16] Added scenario forecasts to all graphs now. This would now be the preferred forecast for most.
This is the first time with a peak in confirmed UK cases (also for deaths, but this is uncertain because it is at the same date).
[2020-04-10] Updated documentation with better description of short-term estimates and peak determination.
[2020-04-09] Added table with estimated peak dates (if happened) and dates to and since the peak. Note that this can be a local peak, and subsequent re-acceleration (or data revisions) can result in a new peak later.
[2020-04-08] Minor correction to peak estimates. Added table with scenario forecasts.
[2020-04-06] Added a post hoc estimate of the peak number of cases. This needs at least three confirmed observations (four for deaths) after the event. It is based on the averaged smooth trend, and can change later or be a local peak. It is marked with a vertical line with the date label, or a date with left arrow in the bottom left corner of the graph. This is backported to 2020-04-04.
[2020-04-02] Now including more US States, based on New York Times data.
[2020-03-31] Scenario forecasts, based on what happened in China earlier this year, are presented for several countries (line marked with x). Created more plausible 90% confidence bands (dotted line in same colour).
[2020-03-26] Scenario forecasts that are based on what happened in China earlier this year, only for Italy.
[2020-03-24] Our forecasts are starting to overestimate in some cases. This was always expected to happen when the increase starts to slow down. Scenario forecasts that are based on what happened in China earlier this year, but only for Italy and Spain sofar.

Initial visual evaluation of forecasts of Deaths