
Jurgen A. Doornik

An Object-oriented Matrix

Programming Language

OxTM 9

OxMetrics 9

Published by Timberlake Consultants Ltd – timberlake.co.uk
www.oxmetrics.dev, doornik.com

OxTM 9
An Object-oriented Matrix Programming Language

Copyright ©2021 Jurgen A Doornik (minor revision 2024 for Ox 9.20)

First published by Timberlake Consultants in 1998

Revised in 1999,2001,2006,2009,2013,2015(7.1),2018

All rights reserved. No part of this work, which is copyrighted, may be reproduced

or used in any form or by any means – graphic, electronic, or mechanical, including

photocopy, record taping, or information storage and retrieval systems – without the

written consent of the Publisher, except in accordance with the provisions of the

Copyright Designs and Patents Act 1988.

Whilst the Publisher has taken all reasonable care in the preparation of this book, the

Publisher makes no representation, express or implied, with regard to the accuracy

of the information contained in this book and cannot accept any legal responsability

or liability for any errors or omissions from the book, or from the software, or the

consequences thereof.

British Library Cataloguing-in-Publication Data
A catalogue record of this book is available from the British Library

Library of Congress Cataloguing-in-Publication Data
A catalogue record of this book is available from the Library of Congress

Jurgen A Doornik

p. cm. – (An Object-oriented Matrix Programming Language – OxTM 9)

ISBN ISBN 978-0-9932738-3-4

Published by
Timberlake Consultants Ltd Timberlake Analytics, Inc

The Loft, 2C Blake Mews Kew Gardens

Richmond, TW9 3GA, UK

http://www.timberlake.co.uk www.timberlake-analytics.com

Trademark notice
All Companies and products referred to in this book are either trademarks or regis-

tered trademarks of their associated Companies.

Contents

Front matter iii

Contents v

List of Figures xxvii

List of Program Listings xxviii

Preface xxxi

I Introduction to Ox 1

1 Summary information 3
1.1 What is Ox? . 3
1.2 Availability . 3
1.3 Ox version . 3
1.4 Learning Ox . 4
1.5 Ox platforms . 4
1.6 Ox supported data formats . 4
1.7 Extending Ox . 5
1.8 World Wide Web . 5
1.9 Online documentation . 5
1.10 Ox-users discussion list . 5
1.11 Installation . 5
1.12 Completing the basic installation 6
1.13 Directory structure . 6
1.14 OX9PATH . 7

2 Getting started with Ox 8
2.1 Introduction . 8
2.2 A first Ox program . 8
2.3 Running the first Ox program 10

2.3.1 Ox Professional under Windows 10

v

vi CONTENTS

2.3.2 Ox Professional and Ox Console under Windows 10
2.3.3 Ox Professional under Linux and macOS 10
2.3.4 Ox Professional and Ox Console under Linux and macOS 10

2.4 Online help . 11
2.5 Using file names in Ox . 11
2.6 Ox file extensions . 11
2.7 More on running Ox programs 11

2.7.1 Running programs with graphics 11
2.7.2 Compilation into .oxo file 12
2.7.3 The debugger . 12
2.7.4 OxEdit . 12

2.8 Command line arguments . 13
2.8.1 General switches . 13
2.8.2 Optimization switches 14
2.8.3 Run-time switches . 14

2.9 Extending Ox . 14

3 Introduction to the Ox language 15
3.1 Variables, types and scope . 15
3.2 Indexing matrices . 16
3.3 Functions and function arguments 17
3.4 The for and while loops . 19
3.5 The foreach loop . 20
3.6 The if statement . 22
3.7 Operations and matrix programming 24
3.8 Arrays . 25
3.9 Multiple files: using #include and #import 26

3.9.1 Including the code into the main file 27
3.9.2 Importing the code into the main file 27
3.9.3 Importing Ox packages 28
3.9.4 Separate compilation 28

3.10 Object-oriented programming 29
3.11 Style and Hungarian notation . 29
3.12 Optimizing for speed . 31

4 Parallel programming in Ox 32
4.1 Introduction . 32
4.2 Canonical for and foreach loops 32
4.3 Parallel for and foreach loops 33

4.3.1 Local variables . 34
4.3.2 Global variables . 34
4.3.3 Member variables of objects 35

4.4 Serial variables . 35
4.5 Serial functions . 36

CONTENTS vii

4.6 Serial sections . 36
4.7 Parallel if . 37
4.8 Random number generation . 38
4.9 Monte Carlo example . 39
4.10 Monte Carlo example using OxMPI 40
4.11 Monte Carlo example using the Simulator class 41

5 How to . . . 45

6 Numerical accuracy 49

II Function and Language Reference 55

7 Function summary 57

8 Function reference 69
acf . 70
acos . 71
aggregatec . 72
aggregater . 72
any . 73
arglist . 74
array . 74
asin . 75
atan . 75
atan2 . 75
bessel . 76
betafunc . 77
binand . 78
bincomp . 78
binor . 78
binpop . 78
binxor . 78
binomial . 78
cabs . 80
cdiv . 80
cerf . 80
cexp . 80
clog . 80
cmul . 80
csqrt . 80
ceil . 83
chdir . 83

viii CONTENTS

choleski . 84
classname . 85
clone . 85
columns . 86
constant . 86
correlation . 87
cos . 87
cosh . 87
countc . 88
countr . 89
cumprod . 90
cumsum . 90
cumulate . 92
date . 93
dawson . 93
dayofcalendar . 94
dayofeaster . 94
dayofmonth . 94
dayofweek . 94
decldl . 96
decldlband . 97
declu . 99
decmgs . 101
decqr . 102
decqrmul . 104
decqrupdate . 106
decschur . 108
decschurgen . 108
decsvd . 111
deletec . 112
deleter . 112
deleteifc . 112
deleteifr . 112
denschi . 113
densf . 113
densn . 113
denst . 113
determinant . 114
dfft . 115
diag . 116
diagcat . 116
diagonal . 117
diagonalize . 118

CONTENTS ix

diff . 119
diff0 . 119
discretize . 120
double . 121
dropc . 122
dropr . 122
eigen . 123
eigensym . 123
eigensymgen . 125
eprint . 126
erf . 126
exclusion . 127
exit . 127
exp . 128
expint . 128
fabs . 129
factorial . 129
fclose . 130
fcopy . 130
feof . 130
fflush . 130
fexists . 130
fft . 131
fft1d . 131
find . 132
findsample . 135
floor . 136
fmod . 136
fopen . 137
format . 138
fprint . 139
fprintln . 139
fread . 140
fremove . 141
fscan . 141
fseek . 145
fsize . 146
ftime . 146
fwrite . 146
gammafact . 147
gammafunc . 148
getcwd . 149
getenv . 149

x CONTENTS

getfiles . 149
getfolders . 149
headc . 150
hyper 2F1 . 151
idiv . 152
imod . 152
insertc . 152
insertr . 152
int . 153
intersection . 153
invert . 154
inverteps . 154
invertgen . 155
invertsym . 157
isarray . 157
isclass . 157
isdouble . 157
isfile . 157
isfunction . 157
isint . 157
ismatrix . 157
ismember . 157
isstring . 157
isdotfeq . 158
isfeq . 158
isdotinf . 158
isdotmissing . 159
isdotnan . 159
ismissing . 159
isnan . 159
lag . 160
lag0 . 160
limits . 161
loadmat . 162
loadsheet . 164
log . 166
log10 . 166
logdet . 166
loggamma . 167
lower . 168
matrix . 169
max . 169
maxc . 170

CONTENTS xi

maxcindex . 170
maxr . 170
meanc . 171
meanr . 171
min . 171
minc . 171
mincindex . 171
minr . 171
moments . 172
nans . 174
norm . 175
nullspace . 176
ols2c . 177
ols2r . 177
olsc . 177
olsr . 177
ones . 179
outer . 179
oxfilename . 180
oxprintlevel . 181
oxrunerror . 182
oxversion . 182
oxwarning . 182
peakc . 184
periodogram . 185
polydiv . 188
polyeval . 188
polygamma . 189
polymake . 190
polymul . 191
polyroots . 192
pow . 193
print . 193
println . 193
probchi . 198
probf . 198
probn . 198
probt . 198
prodc . 200
prodr . 200
quanchi . 201
quanf . 201
quann . 201

xii CONTENTS

quant . 201
quantilec . 202
quantiler . 202
range . 204
ranloopseed . 205
rank . 205
rann . 206
ranseed . 207
ranu . 209
reflect . 210
replace . 211
reshape . 213
reversec . 213
reverser . 213
round . 214
rows . 214
savemat . 215
savesheet . 217
scan . 218
selectc . 219
selectr . 219
selectifc . 219
selectifr . 219
selectrc . 219
setbounds . 221
setdiagonal . 222
setlower . 222
setupper . 222
shape . 224
sin . 224
sinh . 224
sizec . 225
sizeof . 225
sizer . 225
sizerc . 225
solveldl . 226
solveldlband . 226
solvelu . 227
solvetoeplitz . 228
sortbyc . 229
sortbyr . 229
sortc . 230
sortcindex . 230

CONTENTS xiii

sortr . 230
spline . 231
sprint . 233
sprintbuffer . 233
sqr . 234
sqrt . 234
sscan . 235
standardize . 237
string . 237
strfind . 238
strfindr . 238
strifind . 238
strifindr . 238
strlwr . 239
strtrim . 239
strupr . 239
submat . 239
sumc . 240
sumr . 240
sumsqrc . 240
sumsqrr . 240
systemcall . 240
tailc . 241
tailchi . 242
tailf . 242
tailn . 242
tailt . 242
tan . 242
tanh . 242
thinc . 243
thinr . 243
time . 244
timeofday . 244
timer . 245
timespan . 245
timestr . 246
timing . 246
today . 246
toeplitz . 248
trace . 248
trunc . 249
truncf . 249
union . 250

xiv CONTENTS

unique . 250
unit . 250
unvech . 251
upper . 251
va arglist . 252
varc . 253
varr . 253
variance . 253
vec . 254
vech . 254
vecindex . 255
vecr . 257
vecrindex . 258
zeros . 259

9 Predefined Constants 260
9.1 Missing values (NaN) . 261
9.2 Infinity . 261

10 Graphics function reference 262
10.1 Introduction . 262
10.2 Symbol and line types . 265
10.3 Function reference . 267
CloseDrawWindow . 267
Draw . 267
DrawAcf . 267
DrawAdjust . 268
DrawAxis . 273
DrawAxisAuto . 273
DrawBoxPlot . 275
DrawCorrelogram . 275
DrawDensity . 277
DrawHistogram . 278
DrawLegend . 278
DrawLine . 279
DrawMatrix . 279
DrawPLine . 280
DrawPSymbol . 280
DrawPText . 280
DrawQQ . 280
DrawSpectrum . 281
DrawSymbol . 282
DrawT . 283
DrawText . 283

CONTENTS xv

DrawTitle . 283
DrawTMatrix . 284
DrawX . 286
DrawXMatrix . 286
DrawXYZ . 288
DrawZ . 290
SaveDrawWindow . 290
SetDraw . 291
SetDrawWindow . 294
SetTextWindow . 294
ShowDrawWindow . 294

11 Packages 295
11.1 Arma package . 296

arma0 . 296
armaforc . 297
armagen . 298
armavar . 299
diffpow . 300
modelforc . 301
pacf . 302

11.2 Maximization package . 305
11.2.1 Maximization control 305
CMaxControl . 305
GetMaxControl . 306
GetMaxControlEps . 306
MaxControl . 306
MaxControlEps . 306
MaxConvergenceMsg . 306
11.2.2 Maximization functions 307
FindZero . 307
MaxBFGS . 307
MaxNewton . 312
MaxScalarBrent . 315
MaxSimplex . 316
MaxSQP . 319
MaxSQPF . 319
Num1Derivative . 321
Num2Derivative . 321
NumJacobian . 324
SolveNLE . 325
SolveQP . 328

11.3 Probability package . 331
densbeta . 331

xvi CONTENTS

densbinomial . 331
denscauchy . 331
densexp . 331
densextremevalue . 331
densgamma . 331
densgeometric . 331
densgh . 331
densgig . 331
densinvgaussian . 331
denskernel . 331
denslogarithmic . 331
denslogistic . 331
denslogn . 331
densmises . 331
densnegbin . 331
denspareto . 331
denspoisson . 331
denspoisson . 331
densweibull . 331
probbeta . 334
probbinomial . 334
probbvn . 334
probcauchy . 334
probexp . 334
probextremevalue . 334
probgamma . 334
probgeometric . 334
probhypergeometric . 334
probinvgaussian . 334
problogarithmic . 334
problogistic . 334
problogn . 334
probmises . 334
probmvn . 334
probnegbin . 334
probpareto . 334
probpoisson . 334
probweibull . 334
quanbeta . 337
quanbinomial . 337
quancauchy . 337
quanexp . 337
quanextremevalue . 337

CONTENTS xvii

quangamma . 337
quangeometric . 337
quanhypergeometric . 337
quaninvgaussian . 337
quanlogarithmic . 337
quanlogistic . 337
quanlogn . 337
quanmises . 337
quannegbin . 337
quanpareto . 337
quanpoisson . 337
quanweibull . 337
ranbeta . 339
ranbinomial . 339
ranbrownianmotion . 339
rancauchy . 339
ranchi . 339
randirichlet . 339
ranexp . 339
ranf . 339
ranextremevalue . 339
rangamma . 339
rangeometric . 339
rangh . 339
rangig . 339
ranhypergeometric . 339
ranindex . 339
raninvgaussian . 339
ranlogarithmic . 339
ranlogistic . 339
ranlogn . 339
ranmises . 339
ranmultinomial . 339
rannegbin . 339
ranpareto . 339
ranpoisson . 339
ranpoissonprocess . 339
ranshuffle . 339
ranstable . 339
ransubsample . 339
rant . 339
ranuorder . 339
ranweibull . 339

xviii CONTENTS

ranwishart . 339
11.4 QuadPack . 344

12 Class reference 348
12.1 Database and Sample class . 349

12.1.1 Introduction . 349
12.1.2 Database and Sample overview 354
12.1.3 Database and Sample function members 357
Database::Append . 357
Database::Create . 357
Database::Database . 358
Database::DeSelect . 358
Database::DeSelectByIndex 358
Database::DeSelectByName 358
Database::Deterministic 358
Database::Empty . 359
Database::FindSelection 359
Database::ForceSelSample 359
Database::ForceSelSampleByIndex 359
Database::GetAll . 360
Database::GetAllNames . 360
Database::GetDateByIndex 360
Database::GetDates . 360
Database::GetDbName . 360
Sample::GetFrequency . 360
Database::GetGroup . 361
Database::GetGroupLag . 361
Database::GetGroupLagNames 361
Database::GetGroupNames 361
Sample::GetIndex . 361
Database::GetIndexByDate 362
Database::GetIndexByDates 362
Database::GetMaxGroupLag 362
Database::GetMaxSelLag . 362
Database::GetObsLabel . 362
Sample::GetPeriod1 . 362
Sample::GetPeriod2 . 362
Database::GetSample . 362
Database::GetSelEnd . 363
Database::GetSelStart . 363
Database::GetSelInfo . 363
Database::GetSelSample . 363
Database::GetSelSampleMode 363
Sample::GetSize . 363

CONTENTS xix

Database::GetVar . 364
Database::GetVarByIndex 364
Database::GetVarChoices 364
Database::GetVarChoicesByIndex 364
Database::GetVarCount . 364
Database::GetVarIndex . 364
Database::GetVarNameByIndex 364
Database::GetVarType . 364
GetVarTypeByIndex . 364
Sample::GetYear1 . 365
Sample::GetYear2 . 365
Database::Grow . 365
Database::Shrink . 365
Database::Info . 365
Database::IsDated . 365
Database::IsEmpty . 365
Database::Load . 366
Sample::ObsPeriod . 366
Sample::ObsYear . 367
Database::Recode . 367
Database::Remove . 367
Database::RemoveObsIf . 367
Database::Rename . 368
Database::Renew . 368
Database::RenewBlock . 368
Sample::Resample . 368
Database::Save . 369
Database::Select . 369
Database::SelectByIndex 369
Database::SetDbName . 370
Database::SetDates . 370
Database::SetSelInfo . 370
Database::SetSelDates . 370
Database::SetSelSampleByDates 371
Database::SetSelSampleByIndex 371
Database::SetSelSampleMode 371
Database::SetVar . 371
Database::SetVarChoices 372
Database::SetVarChoicesByIndex 372
Database::SetVarType . 372
Database::SetVarTypeByIndex 372
Database::SortBy . 372
Database::Tabulate . 373

xx CONTENTS

12.2 Modelbase : Database class . 374
12.2.1 Introduction . 374
12.2.2 Modelbase overview 376
12.2.3 Modelbase function members 378
Modelbase::ClearEstimation 378
Modelbase::ClearModel . 378
Modelbase::Covar . 378
Modelbase::DbDrawTMatrix 379
Modelbase::DoEstimation 379
Modelbase::Estimate . 379
Modelbase::FindGroup . 380
Modelbase::FindMethod . 380
Modelbase::FixPar . 380
Modelbase::FreePar . 381
Modelbase::GetcDfLoss . 381
Modelbase::GetCovar . 381
Modelbase::GetCovarRobust 381
Modelbase::GetcT . 381
Modelbase::GetcX . 381
Modelbase::GetcY . 381
Modelbase::GetcYlag . 381
Modelbase::GetForecastData 382
Modelbase::GetFreePar . 382
Modelbase::GetFreeParCount 382
Modelbase::GetFreeParNames 382
Modelbase::GetGroupLabels 382
Modelbase::GetLogLik . 382
Modelbase::GetMethod . 382
Modelbase::GetMethodLabel 382
Modelbase::GetMethodLabels 382
Modelbase::GetModelLabel 383
Modelbase::GetModelStatus 383
Modelbase::GetPackageName 383
Modelbase::GetPackageVersion 383
Modelbase::GetPar . 383
Modelbase::GetParCount . 383
Modelbase::GetParNames . 383
Modelbase::GetParStatus 384
Modelbase::GetParTypes . 384
Modelbase::GetPrint . 384
Modelbase::GetResiduals 384
Modelbase::GetResult . 384
Modelbase::GetResVar . 385

CONTENTS xxi

Modelbase::GetStdErr . 385
Modelbase::GetStdErrRobust 385
Modelbase::GetX . 385
Modelbase::GetY . 385
Modelbase::Grow . 385
Modelbase::InitData . 385
Modelbase::InitPar . 386
Modelbase::IsUnivariate 386
Modelbase::MapParToFree 386
Modelbase::Modelbase . 386
Modelbase::Output . 386
Modelbase::OutputHeader 386
Modelbase::OutputLogLik 387
Modelbase::OutputMax . 387
Modelbase::OutputPar . 387
Modelbase::PrintTestVal 387
Modelbase::ResetFixedPar 387
Database::Select . 388
Database::SelectByIndex 388
Modelbase::SetForecasts 388
Modelbase::SetFreePar . 388
Modelbase::SetMethod . 388
Modelbase::SetModelStatus 389
Modelbase::SetPar . 389
Modelbase::SetParCount . 389
Modelbase::SetPrint . 389
Modelbase::SetRecursive 389
Modelbase::SetResult . 389
Modelbase::SetStartPar . 390
Modelbase::ShowBanner . 390
Modelbase::TestRestrictions 390

12.3 PcFiml : Modelbase : Database class 391
PcFiml function members . 395

12.4 PcFimlDgp class . 397
PcFimlDgp::Asymp . 399
PcFimlDgp::Create . 399
PcFimlDgp::DiscardZ . 399
PcFimlDgp::GenerateTo . 399
PcFimlDgp::GenerateU . 400
PcFimlDgp::GenerateV . 400
PcFimlDgp::GenerateY . 400
PcFimlDgp::GenerateZ . 400
PcFimlDgp::GenerateU t . 400

xxii CONTENTS

PcFimlDgp::GenerateV t . 400
PcFimlDgp::GenerateY t . 400
PcFimlDgp::GenerateZ t . 400
PcFimlDgp::GetU . 401
PcFimlDgp::GetV . 401
PcFimlDgp::GetY . 401
PcFimlDgp::GetZ . 401
PcFimlDgp::PcFimlDgp . 401
PcFimlDgp::Prepare . 401
PcFimlDgp::Print . 401
PcFimlDgp::SetDistribution 401
PcFimlDgp::SetFixedZ . 401
PcFimlDgp::SetInit . 402
PcFimlDgp::SetU . 402
PcFimlDgp::SetV . 402
PcFimlDgp::SetY . 402
PcFimlDgp::SetZ . 402
PcFimlDgp::SetYParameter 402
PcFimlDgp::SetZParameter 402
PcFimlDgp::UseObsLoop . 403

12.5 PcNaiveDgp : RanPcNaive class 404
PcNaiveDgp::DiscardZ . 404
PcNaiveDgp::Generate . 404
PcNaiveDgp::GenerateTo . 404
PcNaiveDgp::GenerateBreakTo 404
PcNaiveDgp::GetU . 405
PcNaiveDgp::GetY . 405
PcNaiveDgp::GetZ . 405
PcNaiveDgp::PcNaiveDgp . 405

12.6 RanMC class . 406
RanMC::Choleski . 406
RanMC::CheckDist . 406
RanMC::RanDist . 406
RanMC::RanDist1 . 407
RanMC::WriteDist . 407

12.7 RanPcNaive class . 408
RanPcNaive::Asymp . 410
RanPcNaive::GenerateTo . 410
RanPcNaive::GenerateBreakTo 410
RanPcNaive::HasFixedZ . 410
RanPcNaive::GetFixedZValue 410
RanPcNaive::RanPcNaive . 411
RanPcNaive::Print . 411

CONTENTS xxiii

RanPcNaive::SetDistribution 411
RanPcNaive::SetFixedZ . 412
RanPcNaive::SetFixedZValue 412
RanPcNaive::SetInit . 412
RanPcNaive::SetNewFixedZValue 413
RanPcNaive::SetUParameter 413
RanPcNaive::SetYParameter 413
RanPcNaive::SetYParameterEcm 413
RanPcNaive::SetZCustom . 414
RanPcNaive::SetZParameter 414
RanPcNaive::StoreInDatabase 414

12.8 Simulator : SimulatorBase class 415
Simulator::Generate . 417
Simulator::Plot . 418
Simulator::Prepare . 418
Simulator::SaveIn7 . 418
Simulator::SaveRecIn7 . 418
Simulator::SetCoefNames 419
Simulator::SetTestNames 419
Simulator::SetPlotRep . 419
Simulator::SetRecursive 419
Simulator::SetStore . 419
Simulator::SetTwoSided . 419
Simulator::Simulate . 419
Simulator::Simulator . 420

13 Language reference 421
13.1 Introduction . 421
13.2 Lexical conventions . 422

13.2.1 Tokens . 422
13.2.2 Comment . 422

13.3 Identifiers . 422
13.3.1 Keywords . 422
13.3.2 Constants . 423

13.3.2.1 Integer constants 423
13.3.2.2 Character constants 423
13.3.2.3 Double constants 424
13.3.2.4 Null constants 424
13.3.2.5 Matrix constants 424
13.3.2.6 String constants 426
13.3.2.7 Raw string constants 426
13.3.2.8 Array constants 426

13.4 Objects . 427
13.4.1 Types . 427

xxiv CONTENTS

13.4.1.1 Type conversion 427
13.4.2 Lvalue . 427
13.4.3 Scope . 427

13.5 External declarations . 428
13.5.1 Enumerations . 428
13.5.2 Storage class specifiers 429
13.5.3 Type qualifiers . 429
13.5.4 External variable declarations 429
13.5.5 Functions . 430

13.5.5.1 Function declarations 430
13.5.5.2 Function definitions 431
13.5.5.3 Returning a value 432
13.5.5.4 Default values for function arguments 433
13.5.5.5 Variable length parameter list 433
13.5.5.6 Inline function definitions 434

13.5.6 Classes . 435
13.5.6.1 Member function definitions 436
13.5.6.2 Constructor and destructor functions 437
13.5.6.3 public and protected members, structs . 438
13.5.6.4 The this reference and member scope 438
13.5.6.5 Static members 439
13.5.6.6 Derived classes 439
13.5.6.7 Virtual functions 440

13.6 Namespace . 442
13.7 Statements . 443

13.7.1 Selection statements . 444
13.7.2 Switch statements . 445
13.7.3 Iteration statements . 447
13.7.4 Jump statements . 449
13.7.5 Declaration statements 451
13.7.6 try-catch block and throw 452
13.7.7 Closed statement list 453
13.7.8 Parallel programming 453

13.7.8.1 Canonical for and foreach loops 453
13.7.8.2 Parallel for and foreach loops 454

13.8 Expressions . 456
13.8.1 Primary expressions . 458

13.8.1.1 Multiple assignment and multiple returns . . . 459
13.8.1.2 Lambda function 460

13.8.2 Postfix expressions . 461
13.8.2.1 Member reference 461
13.8.2.2 Function calls 462
13.8.2.3 Spread operator 463

CONTENTS xxv

13.8.2.4 Explicit type conversion 463
13.8.2.5 Indexing vector and array types 464
13.8.2.6 String indexing of array types 465
13.8.2.7 Postfix incrementation 465
13.8.2.8 Transpose . 466

13.8.3 Power expressions . 466
13.8.4 Unary expressions . 467

13.8.4.1 Prefix incrementation 467
13.8.4.2 Unary minus and plus 468
13.8.4.3 Logical negation 468
13.8.4.4 Reference operator 468
13.8.4.5 New and delete 468

13.8.5 Multiplicative expressions 469
13.8.5.1 Generalized inverse 471

13.8.6 Additive expressions 472
13.8.7 Concatenation expressions 472
13.8.8 Relational expressions 474
13.8.9 Equality expressions 475
13.8.10 Logical dot-AND expressions 476
13.8.11 Logical-AND expressions 476
13.8.12 Logical dot-OR expressions 477
13.8.13 Logical-OR expressions 477
13.8.14 Conditional expression 477
13.8.15 Assignment expressions 478
13.8.16 Comma expression . 479
13.8.17 Constant expressions 479

13.9 File inclusion and preprocessing 479
13.9.1 Using folder names in Ox 479
13.9.2 Search path in Ox . 480
13.9.3 File inclusion . 480
13.9.4 Import of modules . 480
13.9.5 Conditional compilation 481
13.9.6 Pragmas . 482

13.10 Some differences with C and C++ 482

III Appendix 483

A1 Some matrix algebra 485

References 491

Subject Index 495

Figures

6.1 AR(1) grid of Longley data . 50
6.2 Likelihood grid of Klein model I 51

10.1 PDF file from draw1.ox . 263
10.2 draw2.pdf . 265
10.3 Illustration of DrawAdjust . 272
10.4 PDF file from drawaxis log10.ox 274
10.5 Autocorrelation functions . 276
10.6 Periodograms and spectral density estimates 281
10.7 DrawTMatrix example with dates and times 285
10.8 DrawXMatrix example with dates and times 287
10.9 Three-dimensional plot . 289
10.10 Three-dimensional plot . 289

xxvii

Listings

A first Ox program . 8
Mini project . 26
A parallel Monte Carlo experiment . 39
A parallel Monte Carlo experiment . 40
A parallel Monte Carlo experiment using the Simulator class 42
Using fscan: iotest2.ox . 143
Using loadsheet: iotest13.ox . 164
Using scan: iotest3.ox . 218
Using sscan: iotest5.ox . 235
draw1.ox . 264
draw2.ox . 264
draw4.ox . 271
drawaxis log10.ox . 273
draw5.ox . 276
draw6.ox . 281
draw10.ox . 284
draw11.ox . 286
draw7.ox . 288
draw8.ox . 289
draw3.ox . 292
Maximization example (MaxBFGS): maxbfgs.ox 309
Maximization example (MaxNewton): maxnewt.ox 313
Maximization example (MaxSimplex): maxboth.ox 316
Numerical differentiation example: numder.ox 323
Numerical Jacobian example: jacobian.ox 324
nonlinear equations example, part of: solvenle1.ox 326
QP example: solveqp1.ox . 329
ox/packages/quadpkd/quadpack.ox 346
Database class example, dbclass.ox 349
Database class example using weekly data, dbdates.ox 351
Database choice variables example, dbchoice.ox 352
Modelbase class example, mbclass.ox 374
PcFiml class example for VAR estimation and Cointegration, pcf1.ox . 391

xxviii

LISTINGS xxix

PcFiml class example for Model estimation, pcf3.ox 393
PcFimlDgp class example, pcfdgp.ox 397
RanPcNaive class example, pcndgp.ox 408
Simulator class example, simtest.ox 415

Preface

My interest in computer languages was awakened by reading a short book on compiler
building written by Niklaus Wirth (see Wirth, 1987). The first opportunity to dabble
in this field was the design and implementation of the algebra language in PcGive 7
(also used in later versions). The result was a tiny vector language, not very efficient,
but it worked. My ambition was to write a more powerful language, to leverage the
growing body of computational code that I was developing. The next attempt took a
few weeks at the end of 1992. It did not lead to a useful program, but the experience
helped in the third and serious attempt: Ox. That project was started in April 1994,
just after completing version 8 of PcGive. The aim was to use it for the simulations
required for my doctoral thesis. Having done most of my programming of recent years
in C, I was unhappy with the syntax of the matrix languages I tried. By November I
had a preliminary version. It had a database and PcFiml class, and I could use it for my
simulations. The Ox library gradually expanded, but my thesis had a higher priority. In
the summer of 1995, the number of Ox users tripled: both Neil Shephard and Richard
Spady started to use it. Their wishes and comments helped push Ox towards its current
form, including Unix versions, support for DLLs, more graphics and many types of
random number generators.

The origin of the name Ox is a bit vague. It is the first and last letter of Object-
oriented matrix. Initially I was comparing the program to an ox: a solid work animal
but quite slow. Since then, however, Ox has become a lot faster, to the point where it
is even beating some native C and Fortran programs. Alternatively, the name can be
interpreted as a tribute to Oxford and its University.

Of course, there is still much to be added to Ox, and development will continue.
Both OxMetrics and OxEdit can be used as an environment for development. In addi-
tion, there is downloadable support for Ox in Visual Studio Code.

Please keep sending your suggestions for improvements. Questions regarding Ox
and Ox packages should primarily be addressed to the ox-users discussion list. You
can contact me if you need Ox on a platform which is currently not supported. My
work page at doornik.com as well as www.oxmetrics.dev are regularly updated
with pointers to relevant Ox information.

Clearly, I wish to thank Neil Shephard and Richard Spady for adopting Ox early on,
and their many comments and suggestions. Also to their students, who were encour-
aged to use Ox and gave feedback. By now, many more people have downloaded Ox,

xxxi

xxxii PREFACE

and given it a try, among these Francisco Cribari-Neto deserves special thanks. I thank
David Hendry for continuing support for this project, and also wish to thank Maureen
Baker, Christopher Baum, Charles Bos, Peter Boswijk, Max Bruche, James David-
son, Ola Elerian, Malick Fall, Richard Gascoigne, Frank Gerhard, Siem Jan Koopman,
Hans-Martin Krolzig, Michal Kurcewicz, Ulrich Küsters, Sébastien Laurent, Richard
Lewney, Rutger Lit, James MacKinnon, Aurora Manrique, Michael Massmann, Sopho-
cles Mavroeidis, Steve Moyle, Bent Nielsen, Marius Ooms, Mike Orszag, Felix Ritchie,
Pieter Jelle van der Sluis, Ana Timberlake, Giovanni Urga. And, of course, thanks to
all those people who have sent me email messages saying how much they appreciate
Ox (I like those!).

As the proverbial last but not least, I wish to thank Kate Doornik: without her
support and company I would not have managed.

Oxford, May 2021

I wish you enjoyable and productive use of

Ox

Part I

Introduction to Ox

Chapter 1

Summary information

1.1 What is Ox?

Ox is an object-oriented matrix programming language with a comprehensive mathe-
matical and statistical function library. Matrices can be used directly in expressions, for
example to multiply two matrices, or to invert a matrix. The major features of Ox are
its speed, extensive library, and well-designed syntax, which leads to programs which
are easier to maintain.

1.2 Availability

The full Windows version of Ox, called Ox Professional is part of the OxMetrics soft-
ware that is available from Timberlake Consultants. Timberlake can be found on the
internet at www.timberlake.co.uk.

The Windows/macOS/Linux command-line versions of Ox can be downloaded
from: www.doornik.com. These are called Ox Console.

Starting with version 9, basic Ox is the same in the professional and console version.
So both support parallel loops.

For detailed information on the installation structure see the read ox Windows.txt

and read ox macOS linux.txt files (both are in the ox\doc folder).

1.3 Ox version

This documentation refers to version 9. Check the web addresses given in §1.8 for
changes which were made after publication of this book.

3

4 Chapter 1 Summary information

Table 1.1 Ox executable front-end
Platform Name Console Debug Graphs

Save Show
Windows/Linux/macOS oxl yes yes yes no
Windows/Linux/macOS OxRun no yes yes yes

1.4 Learning Ox
The best place to learn Ox is Doornik and Ooms (2006), which gives an introduction to
the Ox language, complemented with econometric and statistical examples, as well as
many exercises (the tutorial files are installed in ox\tutorial). Also see the Getting
started section in the on-line help system. Chapter 3 gives a shorter introduction.

1.5 Ox platforms
Ox runs on 64-bit Windows, 64-bit Linux (Intel/AMD), and 64-bit macOS (both Apple
and Intel silicon).

Ox is most conveniently run via OxEdit or OxMetrics. OxEdit uses oxl, and Ox-
Metrics OxRun. Table 1.1 compares the two. Console indicates where the compiler
sends its output to: oxl sends it to the terminal window if run from the command line,
while OxRun sends it to OxMetrics. The first yes/no under graphics indicates whether
graphs can be created and saved to disk, the second whether graphs can be displayed on
screen by Ox.

Under macOS and Linux the oxl programs are scripts.
Ox can be run in four ways:

1. from the console (command line or terminal window) using oxl.
Graphs cannot be displayed.

2. from OxEdit throughthe ‘run’ icon (using oxl)
Graphs cannot be displayed.

3. from OxMetrics (either using OxRun or the ‘run’ icon)
Graphs are shown in OxMetrics. This requires Ox Professional (or any version of
OxMetrics).

1.6 Ox supported data formats
Ox can read (and write) the following data files directly into a matrix:

• .oxdata (OxMetrics 9 data file),
• .in7 (PcGive 7 data file, with data in .bn7 file),
• .xlsx (Excel workbook files),
• .csv (comma separated data file),
• .csv.zip (zipped comma separated data file),

1.7 Extending Ox 5

• .mat (ASCII matrix file),
• .dat (ASCII data file with load information),
• .dta (Stata data file).

In addition, there are text and low-level functions for reading and writing binary files.

1.7 Extending Ox
Ox can be extended on all platforms. The Ox Developer’s manual documentation pro-
vides examples of what you can do:

• Develop an OxPack compatible interactive package when deriving from the Mod-
elbase class.

• Make extensions to Ox in e.g. C/C++ or Fortran, and put that in a DLL; such
functions are then callable from Ox code.

• Use Ox as a mathematics library (e.g. if you are programming in C/C++ but do not
want to program in Ox; or to call functions such as Choleski decomposition or a
random number generator in your Ox extension DLL).

• Write an interface wrapper around Ox code. Some examples are given.
Using OxRun, Ox can use OxMetrics as a front-end, which holds databases, and

receives text and graphical output from Ox (and also other modules such as PcGive,
STAMP, PcNaive, etc.).

1.8 World Wide Web
Check www.oxmetrics.dev or doornik.com for information on bugs, bug fixes, new
features, benchmarks and other information relevant to Ox.

1.9 Online documentation
The Ox help system is implemented as a set of HTML pages which can be read with an
internet browser. Open \ox\docs\index.html in your browser to start help.

1.10 Ox-users discussion list
The ox-users discussion group is an email-based forum to discuss any problems related
to Ox programming, and share code and programming solutions. Consult the online
help for information on joining the list.

1.11 Installation
Installation can be done as follows:

6 Chapter 1 Summary information

(1) For Windows use the provided setup program, which will do the complete installa-
tion. The settings of §1.12 should have been made automatically.

(2) For macOS use the provided setup programs, which will do the complete installa-
tion.

(3) Under Linux: use the RPM or DEB version for automated installation.

NO WARRANTY WHATSOEVER IS GIVEN FOR THESE PROGRAMS.
YOU USE THEM AT YOUR OWN RISK!

All company and product names referred to in this book are either trademarks or
registered trademarks of their associated companies.

1.12 Completing the basic installation

No further action is required, unless you wish to run the command line version of Ox
(that is: oxl) from anywhere in your Command prompt window. In that case you need
to add the ox folder to your PATH statement.

1.13 Directory structure

On windows the Ox installation is by default in

C:\Program Files\OxMetrics9\ox

On macOS the installation is in:

/Applications/OxMetrics9/ox

and on Linux in:

/usr/share/OxMetrics9/ox

The layout within the installation folder is:
ox – executables and DLLs (64-bit version)
ox/data – default data directory
ox/dev – examples on how to extend Ox
ox/doc – documentation (start index.html)

ox/include – Ox header files
ox/lib – useful additional source code files
ox/packages – Ox extension packages
ox/samples – Ox samples directory with code for Ch. 2
ox/src – Ox code for .oxo files in ox/include

ox/tutorial – Tutorial files accompanying Doornik and Ooms (2006)

1.14 OX9PATH 7

ox/samples/bench – benchmark samples
ox/samples/classes – Line and Angle classes from §13.5.6
ox/samples/database – database class examples
ox/samples/graphics – graphics examples
ox/samples/inout – input/output examples
ox/samples/lib – examples for source code files in ox/lib

ox/samples/maximize – function maximization and differentiation
ox/samples/oxpack – application illustrating OxPack dialogs
ox/samples/pcfiml – PcFiml examples
ox/samples/ranapp – C++ wrapper around Ox code∗

ox/samples/simulation – Simulator class examples
ox/samples/virtual – Demonstrates virtual class member functions

The main executable files are in ox/:
oxl.exe – standard Ox compiler (Windows)
oxl – standard Ox compiler (Linux, macOS)

1.14 OX9PATH

Ox is installed with a default search path for code and data files. To see what it is, open
a terminal (console) window, go to the ox folder, and enter oxl -i.

The search path can be amended on the command line, or through the OX9PATH

environment variable.
Ox will read the OX9PATH environment variable on all platforms. If you do set it,

you must include the default paths.

Chapter 2

Getting started with Ox

2.1 Introduction
Ox is an object-oriented matrix language with a comprehensive mathematical and sta-
tistical function library. Matrices can be used directly in expressions, for example to
multiply two matrices, or to invert a matrix. The basic syntax elements of Ox are simi-
lar to the C, C++ and Java languages (however, knowledge if these languages is not a
prerequisite for using Ox). This similarity is most clear in syntax items such as loops,
functions, arrays and classes. A major difference is that Ox variables have no explicit
type, and that special support for matrices is available.

The advantages of object-oriented programming are that it potentially improves the
clarity and maintainability of the code, as well as reducing coding effort through inher-
itance. Several useful classes are provided with Ox.

This chapter will introduce a first Ox program, and discuss the various ways in
which the program can be executed. The next chapter will then give a brief overview of
the language elements.

2.2 A first Ox program
As a first example of an Ox program consider the following Ox code:

. .samples/myfirst.ox
#include <oxstd.oxh>// include the Ox standard library header

main() // function main is the starting point
{

decl m1, m2; // declare two variables, m1 and m2

m1 = unit(3); // assign to m1 a 3 x 3 identity matrix
m1[0][0] = 2; // set top-left element to 2
m2 = <0,0,0;1,1,1>; // m2 is a 2 x 3 matrix, the first

// row consists of zeros, the second of ones

println("two matrices", m1, m2); // print the matrices
}
. .

8

2.2 A first Ox program 9

The program is in ox\samples\myfirst.ox; running this program should produce
the following result:

two matrices
2.0000 0.00000 0.00000
0.00000 1.0000 0.00000
0.00000 0.00000 1.0000

0.00000 0.00000 0.00000
1.0000 1.0000 1.0000

An Ox program consists of one or more source code files. All source files have the
.ox extension. Header files are used to communicate declarations from one source file
to another. Header files have the .oxh extension.1

The next section explains how to run the Ox program on your system. First we
consider the myfirst.ox program in more detail:

• The first line includes the oxstd.oxh file into the source code (literally: the con-
tents of the file are inserted at that point). This file contains the function declarations
of the standard library, so that the function calls can be checked for number of ar-
guments. The file name is between < >, indicating that the header file came with
the Ox program.

• The function main is the starting point, and each program is only allowed one such
function. Even though main has no arguments, it still requires ().

• Variables may be declared with the decl statement, and have no type until the
program is actually run.

• unit is a standard library function, which creates an identity matrix; here it is
called with argument 3. The result is assigned to the variable m1. The type of m1
has become matrix, and until a reassignment is made (or it goes out of scope), m1
will keep its type and value.

• Note that indexing starts at zero, so the top-left element is m1[0][0]: row 0, col-
umn 0. The first index is the row index: m1[1][2] is row 1, column 2. Ox has this
convention in common with many other programming languages.

• <0,0,0;1,1,1> is a matrix constant. Elements are listed by row, whereby rows
are separated by a semicolon, and elements within a row by a colon. This value is
stored in m2, which is now also of type matrix.

• println is a library function, which can print any type of variable or constant to
the standard output screen. It can take any number of arguments. Here it has three:
a string constant and two variables (which both happen to be matrices).

An important advantage of Ox is that we can directly work with matrices, and do not
have to worry about memory allocation and deallocation. Low-level languages may be
faster, although we have encountered several cases in which Ox performed better than
a comparable C program. Ox code has a much closer correspondence to mathematical
expressions used on paper.

1Previous versions of Ox used .h instead. This still works.

10 Chapter 2 Getting started with Ox

2.3 Running the first Ox program

2.3.1 Ox Professional under Windows

Load the myfirst.ox program in OxMetrics and click on the Run button.
Or right-click on myfirst.ox in the workspace window after it has een loaded into

OxMetrics, and select Run Ox.

2.3.2 Ox Professional and Ox Console under Windows

Load the myfirst.ox program in OxEdit and click on Run (the running person icon
on the toolbar).

The Ox program can also be run from a command (terminal) window. E.g. if Ox is
installed in Program Files\OxMetrics9\ox on the current drive:

cd "\Program Files\OxMetrics9\ox\samples"

Followed by
oxl myfirst

There is no need to add the .ox extension. If oxl cannot be found, you have to add the
path to the executable file, which is in ox:

..\oxl myfirst

Having to add the path to oxl.exe everytime is a nuisance, and there are several
alternatives which are more convenient:

• Add the oxn folder to the environment PATH. In the default installation this is
C:\Program Files\OxMetrics9\ox.

• Use OxEdit to run your Ox programs.
• Ox Professional users can run their programs (with graphics) from OxMetrics.

If you do not get the output listed in the previous section check the installation notes
in Chapter 1.11.

2.3.3 Ox Professional under Linux and macOS

Load the myfirst.ox program in OxMetrics and click on the Run button on the tool-
bar).

Or right-click on myfirst.ox in the workspace window after it has been loaded into
OxMetrics, and select Run Ox.

2.3.4 Ox Professional and Ox Console under Linux and macOS

Load the myfirst.ox program in OxEdit and click on Run (the running person icon
on the toolbar).

If Ox has been installed correctly, the Ox program can also be run from a terminal
window by typing (this assumes Ox is installed in /ox on the current drive, which is
unlikely to be the correct path):

cd /ox/samples

Followed by

2.4 Online help 11

oxl myfirst

There is no need to add the .ox extension.
If your output is:

myfirst.ox (1): ’oxstd.oxh’ include file not found
myfirst.ox (7): ’unit’ undeclared identifier
myfirst.ox (12): ’print’ undeclared identifier

Then the header file was not found, and you may need to set the OX9PATH environment
variable.

2.4 Online help
A large part of this book is part of the online help system. The Ox help system is
implemented as a set of HTML pages. To start the help open \ox\docs\index.html

in your browser.
OxMetrics conveniently lists the Ox Help index in the Help pane in the workspace.

When editing an Ox file, press F1 for context-sensitive help for the word under the text
caret.

2.5 Using file names in Ox
If you specify full path names of files in a string constant, you must either use one for-
ward slash, or two backslashes: "./data.mat" or ".\\data.mat". Ox will interpret
one backslash in a string as an escape sequence (as in "\n", see §13.3.2.2); a single
backslash will only work if it does not happen to form an escape sequence. Also note
that the Windows and Linux versions of Ox can handle long file names, and that Linux
treats file names in a case sensitive manner.

2.6 Ox file extensions
Table 2.1 summarizes file types (by extension) used in Ox.

2.7 More on running Ox programs

2.7.1 Running programs with graphics

Many types of graphs are readily produced in Ox, such as graphs over time of several
variables, cross-plots, histograms, correlograms, etc. Several examples are in Ch. 10.
There is also a GnuPlot package for Ox.

A graph can be saved in various formats: PDF (.pdf, SVG (.svg, encapsulated
PostScript (.eps), PostScript (.ps), and OxMetrics graphics file (.gwg). When using
OxMetrics, graphs can also be saved in Windows Metafile format (.wmf), and copied
to the clipboard for pasting into wordprocessors.

12 Chapter 2 Getting started with Ox

Table 2.1 Ox extensions
extension description
.csv comma separated spread sheet text file,
.dat ASCII data file with load information,
.dll Dynamic link library (Windows)
.eps Encapsulated PostScript file
.gwg OxMetrics graphics file
.h Ox header file (up to version 6, but still supported)
.in7/.bn7 PcGive 7 data file (with corresponding .bn7 file)
.mat ASCII matrix file
.ox Ox source code file
.oxh Ox header file (version 7 onwards)
.oxo compiled Ox code (object file)
.oxdata OxMetrics 9 data file
.pdf PDF file
.ps PostScript file
.so Dynamic link library (Linux, macOS)
.xlsx Excel workbook file

Although creating and saving graphs will work on any system supported by Ox, it
is only possible to see the results directly in OxMetrics. There, text and graphs can be
edited further, or copied to the clipboard for pasting into other programs.

2.7.2 Compilation into .oxo file

The -c switch compiles the Ox source code into an object file (.oxo file). Such files
are binary, and cross-platform compatible. This provides a way to distribute modules
without the source code.

2.7.3 The debugger

Ox has debug facilities, which can be useful to locate bugs in your programs. A debug
session is started with the -d switch. More information is in the Introduction to Ox, see
Doornik and Ooms (2006, Appendix 1).

2.7.4 OxEdit

OxEdit is a powerful text editor, and a very useful program in its own right. Ox Console
is installed with OxEdit, and program output is captured in an OxEdit window, see
www.doornik.com and the introduction to Ox: Doornik and Ooms (2006).

2.8 Command line arguments 13

2.8 Command line arguments

Arguments before the Ox filename are passed to the compiler, those after to the running
program. So in

oxl -DMYTEXT1 prog.ox -DMYTEXT2

the string "-DMYTEXT2" is not handled by the compiler, but available to the prog.ox

program when using the arglist function. If you just type oxl you will get a list of
command line options.

2.8.1 General switches

-c Create an object (.oxo) file, there is no linking or running of the file. An .oxo file
is a binary file which holds compiled Ox code. It can be linked in later (see §3.9).

-cl Create object (.oxo) file after linking in dependencies.
-d Run program in debug mode (with -c: inserts some debug information in compiled

file).
-Dtoken Define tokens, e.g. -DOPTION1+OPTION2 corresponds to the preprocessor

statements
#define OPTION1

#define OPTION2

-lfilelist Link object file, e.g. -lfile1+file2+file3, which links in the named files (the
.oxo extension is assumed). If the file cannot be found as specified, the linker will
search along the include path.

-i Shows the current include path.
-i- Clears the current include path.
-ipath Appends path in front of the current include path. Use a semicolon to separate

directories. The include path is used to search for files included or imported in code.
-ofile Sends output from -c to file (default is the input file with .oxo extension).
-q Run Ox in query (interactive) mode (at start up the file called ox init.ox is run

automatically).
-v# Set verbosity level (-v1 or -v2, default is -v0).

Use -v1 to print information on loaded files and required imports as well as canoni-
cal and parallel loops. Use -v2 to also print which include files are opened.

-W0 Switches off parse warnings. Currently, the parser warns for
• isolated ; is empty statement

This refers to expressions such as if (i == 10); where the semicolon ter-
minates the expression. The warning is also issued for ; after for and while

statements.
• assignment in test expression

This refers to expressions such as if (i = 10) where an assignment is made
inside a test expression. The warning is also issued for assignments in for,
while, and do while statements.

-Wx Treat linker warnings as errors.

14 Chapter 2 Getting started with Ox

2.8.2 Optimization switches

-Od Switch all code optimizations off. By default this is on. Usually, there is no reason
to switch it off, other than to check for speed differences.

-O# Sets optimization level to # (default is 0).

2.8.3 Run-time switches

-r- Do not run code. The code will be compiled and linked. Could be useful to only do
a syntax check.

-rp# Set number of parallel threads. The default is the number of processor cores; use
-rp1 to force one thread only (serial code).

-rd Display generated code.
-rt Print runtime trace.

2.9 Extending Ox
Ox is an open system to which you can add functions written in other languages. It
is also possible to control Ox from another programming environment such as Visual
C++ or Visual Basic.

Extending Ox requires an understanding of the innards of Ox, a decent knowledge
of C, as well as the right tools. You also need a version of Ox with developer support. In
addition, extending Ox is simpler on some platforms than others. Thus, it is unavoidable
that writing Ox extensions is somewhat more complex than writing plain Ox code.
However, there could be reasons for extending Ox, e.g. when you need the speed of
raw C code (but make sure that the function takes up a significant part of the time it
takes to run the program and that it actually will be a lot faster in C than in Ox!), when
code is already available in e.g. Fortran, or to add a user-friendly interface.

The documentation on extending Ox is provided as part of the Ox Appendices,
which is a separate PDF file. Example code on creating extension dynamic-link libraries
are also provided.

Chapter 3

Introduction to the Ox language

The previous chapter introduced the first Ox program. We saw that a program always
includes header files to define the standard library functions, and that it must have a
main function, which is where program control starts. We also saw that the body of
the function is enclosed in curly braces. This chapter will give a brief overview of the
important elements of the Ox language. A more formal description of the Ox syntax is
in Ch. 13. That chapter also has many more examples.

A much more extensive introduction is available, see Doornik and Ooms (2006)
and the on-line help system. It is recommended that this is used to learn more about
the Ox language. The book contains econometric and statistical examples, and provides
tutorial programs as well as many exercises.

3.1 Variables, types and scope
Variables are declared using the decl keyword. Unlike C, variables are implicitly typed.
This means that variables do not have a type when they are declared, but get a type when
values are assigned to them. So a variable can change type during its lifetime. The most
important implicit types are int for an integer value, double for a real number, string for
a text string and matrix for a matrix (two-dimensional array) of real numbers. The next
Ox program illustrates implicit declaration and scope:

#include <oxstd.oxh>

main()
{

decl i, d, m, s;

i = 1; // assign integer to i --> i is of type int
d = 1.0; // assign real number to d --> d is double
s = "some text"; // assign string to s --> s is string
m = zeros(3,3); // assign to m a 3 x 3 matrix of zeros

// --> m is of type matrix
print("i=", i, " d=", d, " s=", s, "\nm=", m);

}

15

16 Chapter 3 Introduction to the Ox language

This prints (\n is the newline character):
i=1 d=1 s=some text
m=

0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000

The scope of a variable refers to the parts of the program which can see the variable.
This could be different from its lifetime: a variable can be ‘alive’ but not ‘seen’. If a
variable is declared outside any function, its scope is the remainder of the source file. It
is possible to export such variables to other source files, as we shall see shortly.

Variables declared inside a function have scope until the closing brace of the level
at which it is declared. The following example illustrates:

#include <oxstd.oxh>

decl g_mX; // external variable
main()
{

decl i = 0; // local variable
{

decl i = 1, j = 0; // new i
g_mX = ones(3,3);
print("i=", i, " j=", j); // prints: i=1 j=0

} // brace end: local i and j cease to exist
print("\ni=", i); // revert to old i, prints: i=0

}

The variable g mX (here we use Hungarian notation, see §3.11), can be seen ev-
erywhere in the main function. To make sure that it can never be seen in other source
files, prefix it with the word static (and probably called s mX). It is good program-
ming practice to use static in such cases, because it is very useful to know that it is
not used in any other files (we may than rename it, e.g., without any unexpected side
effects). An example will be given in myfunc.ox on page 26.

It is good practice to avoid global variables as much as possible: this makes code
more self-contained, avoiding unwanted side effects. Object-oriented programming
provides a way to do that.

3.2 Indexing matrices
Indexing starts at zero, so m[0][0] is the first element of the matrix m. It is easy to
select individual elements or a subset of the matrix. Here are some examples:

#include <oxstd.oxh>

main()
{

decl m = <0, 1, 2; 3, 4, 5; 6, 7, 8>;

println("m = ", m);
println("element 1,0: ", m[1][0]);
println("second row: ", m[1][]);

3.3 Functions and function arguments 17

println("second column: ", m[][1]);
println("without 1st row/3rd col: ", m[1:][:1]);
println("indexed as a vector ", m[2:3]);

}

Which prints as output:
m =

0.00000 1.0000 2.0000
3.0000 4.0000 5.0000
6.0000 7.0000 8.0000

element 1,0: 3
second row:

3.0000 4.0000 5.0000
second column:

1.0000
4.0000
7.0000

without 1st row/3rd col:
3.0000 4.0000
6.0000 7.0000

Warning: indexed a matrix as a vector
indexed as a vector

2.0000
3.0000

These expressions may also be used in assignments, for example:
m[1:][:1] = 10;
m[0][1:2] = m[0][0:1];

3.3 Functions and function arguments
We have already used various functions from the standard library (such as print, ones
and zeros), and written various main functions). Indeed, an Ox program is primarily a
collection of functions. It is important to know that all function arguments are passed by
value. This means that the function gets a copy which it can change without changing
the original. For example:

#include <oxstd.oxh>

func(mA)
{

mA = zeros(1,2);
print("ma in func()", mA);

}

main()
{

decl ma;

ma = ones(1,2);
print("ma before func()", ma);
func(ma);
print("ma after func()", ma);

}

18 Chapter 3 Introduction to the Ox language

which prints:
ma before func()

1.0000 1.0000
ma in func()

0.00000 0.00000
ma after func()

1.0000 1.0000

If the function argument is not changed by the function, it is good programming
style to prefix it with the const keyword, as in:

func(const mA)
{

print("ma in func()", mA);
}

Of course it is possible to return changed values from the function. If there is only
one return value, this is most simply done by using the return statement:

#include <oxstd.oxh>

func(const r, const c)
{

return rann(r, c); // return r x c matrix of random
} // numbers from standard normal
main()
{

print("return value from func():", func(1,2));
}

Another way is to pass a reference to the variable, rather than the variable itself, as
for example in:

#include <oxstd.oxh>

func(const pmA)
{

pmA[0] = zeros(1,2);
print("ma in func()", pmA[0]);

}
main()
{

decl ma;

ma = ones(1,2);
print("ma before func()", ma);
func(&ma);
print("ma after func()", ma);

}

which prints:
ma before func()

1.0000 1.0000
ma in func()

0.00000 0.00000
ma after func()

0.00000 0.00000

3.4 The for and while loops 19

Now the change to ma is permanent. The argument to the function was the address of
ma, and func received that address as a reference. Now we can modify the contents of
the reference by assigning a value to pmA[0]. When func has finished, ma has been
changed permanently. Note that we gave the argument a const qualification. This was
possible because we did not change pmA itself, but what it referred to.

3.4 The for and while loops
Since Ox is a matrix language, there is much less need for loop statements than in C or
C++. Indeed, because Ox is compiled and then interpreted, there is a speed penalty for
using loop statements when they are not necessary.

The for, while and do while loops have the same syntax as in C. The for loop
consists of three parts, an initialization part, a termination check, and an incrementation
part. The while loops only have a termination check.

#include <oxstd.oxh>

main()
{

decl i, d;

for (i = 0; i < 5; ++i)
{

d = i * 0.01;
println(d);

}
println("at the end: i=", i);

}

which prints (println is like print, but ensures that the next output will be starting
on a new line):

0
0.01
0.02
0.03
0.04

at the end: i=5

This could also be written, less elegantly, using while as follows:

#include <oxstd.oxh>

main()
{

decl i, d;

i = 0;
while (i < 5)
{

d = i * 0.01;
println(d);
++i;

20 Chapter 3 Introduction to the Ox language

}
}

The declaration of the loop counter can be moved in to the for statement, restriction
its scope:

#include <oxstd.oxh>

main()
{

decl i, d;
for (decl i = 0; i < 5; ++i)
{

d = i * 0.01;
println(d);

}
//error: println(i);

}

It is not uncommon to have more than one loop counter in the for statement, as the
following code snippet illustrates:

for (decl i = 0, j = 10; i < 5 && j > 0; ++i, --j)
println(i * j);

The && is logical-and, whereas || is logical-or. The ++i statement is called (prefix)
incrementation, and means ‘add one to i’. Similarly, --j subtracts one from j. There is
a difference between prefix and postfix incrementation (decrementation). For example,
the second line in

i = 3;
j = ++i;

means: add one to i, and assign the result to j, which will get the value 4. But

i = 3;
j = i++;

means: leave the value of i on the stack for assignment, then afterwards increment i.
So j will get the value 3. In the incrementation part of the for loop it does not matter
whether you use the prefix or postfix form.

3.5 The foreach loop
The foreach loop is a convenient way to loop over the elements of an array or matrix,
without the need to ‘count’ the number of elements:

#include <oxstd.oxh>
main()
{

decl as = {"AA", "BB"};

foreach (decl s in as)
{

print(" ", s);
}

}

3.5 The foreach loop 21

which prints AA BB. Similarly, foreach (xi in mx) loops over each element in
mx. The element variable (xi here), must be a local variable, while the collection (mx)
can be any pre-existing variable:

#include <oxstd.oxh>
main()
{

decl xi, mx = <1,2,3;4,5,6;7,8,9>;

foreach (xi in mx)
{

print(xi);
}

}

The elements are accessed element-by-element, ordered by row, so this prints:
123456789. Sometimes it is useful to access the matrix by entire rows or columns.
Or to have access to the iterator. Both are possible:

#include <oxstd.oxh>
main()
{

decl mx = <1,2;3,4>, vx = vec(mx);

foreach (decl xi in mx[i][j])
{

println("element ", i, ",", j, ": ", xi);
}
foreach (decl xi in mx[i][])
{

println("row ", i, ": ", xi);
}
foreach (decl xi in mx[][j])
{

println("column ", j, ": ", xi);
}
foreach (decl xi in vx[i])
{

println("vector element ", i, ": ", xi);
}

}

This prints:

element 0,0: 1
element 0,1: 2
element 1,0: 3
element 1,1: 4
row 0:

1.0000 2.0000
row 1:

3.0000 4.0000
column 0:

1.0000
3.0000

column 1:
2.0000

22 Chapter 3 Introduction to the Ox language

4.0000
vector element 0: 1
vector element 1: 3
vector element 2: 2
vector element 3: 4

Note that changing the element does not change the matrix, and that the dimension
of the matrix os not allowed to change during the loop.

3.6 The if statement
The if statement allows for conditional program flow. In the following example we
draw a uniform random number. Such a random number is always between zero and
one. The ranu returns a matrix, unless we ask it to generate just one number. Then it
returns a double, as is the case here.

#include <oxstd.oxh>
main()
{

decl d = ranu(1,1);

if (d < 0.5)
println("less than 0.5");

else if (d < 0.75)
println("less than 0.75");

else
println("greater than 0.75");

}

Again, braces are used to group multiple statements together. They should also
be used when nesting if statements, to avoid confusion about which else belongs
to which if. The code also shows that the declaration may be localized to the if

statement:

if (decl d1 = ranu(1,1); d1 < 0.5)
{ println("d1 is less than 0.5: ", d1);
}
else
{ if (decl d2 = ranu(1,1); d2 < 0.75)

println("d1 >= 0.5 and d2 < 0.75: ", d1, " ", d2);
else

println("d1 >= 0.5 and d2 <= 0.75: ", d1, " ", d2);
}

The if part is executed if the expression evaluates to a non-zero value (true). The
else part otherwise, i.e. when the expression evaluates to zero (false: either an integer
0, or a double 0.0). Some care is required when using matrices in if statements. A
matrix expression is a true statement if all elements are true (non-zero). Even if only
one element is zero, the matrix expression is false, so

#include <oxstd.oxh>

main()

3.6 The if statement 23

{
if (ones(2,2)) print("yes");
else print("no");
if (unit(2)) print("yes");
else print("no");
if (zeros(2,2)) print("yes");
else print("no");

}

prints: yesnono.

There are two forms of relational operators. There is < <= > >= == != meaning
‘less’, ‘less than or equal’, ‘greater’, ‘greater than or equal’, ‘is equal’ and ‘is not equal’.
These always produce the integer value 1 (true) or 0 (false). If any of the arguments is
a matrix, the result is only true if it is true for each element:

#include <oxstd.oxh>

main()
{

if (ones(2,2) == 1) print("yes"); // true for each
else print("no"); // element
if (unit(2) == 1) print("yes");//not true for each
else print("no"); // element
if (zeros(2,2) == 1) print("yes");//not true for each
else print("no"); // element

}

prints: yesnono.

The second form are the dot-relational operators .< .<= .> .>= .== .!= meaning
‘dot less’, ‘dot less than or equal’, ‘dot greater’, ‘dot greater than or equal’, ‘is dot equal’
and ‘is not dot equal’. If any of the arguments is a matrix, the result is a matrix of zeros
and ones, with each element indicating the relevant result.

The any library function returns 1 (true) if any element of the matrix is non-zero,
so that yesyesno will be printed by:

#include <oxstd.oxh>

main()
{

if (any(ones(2,2))) print("yes");
else print("no");
if (any(unit(2))) print("yes");
else print("no");
if (any(zeros(2,2))) print("yes");
else print("no");

}

To conclude: you can test whether all elements of a matrix m are equal to one (say)
by writing: if (m == 1). To test whether any element is equal to one: if (any(m

.== 1)). The expression if (m != 1), on the other hand, is only true if none of the
elements is equal to one. So, use if (!(m == 1)) to test whether it is true that not all
elements are equal to one.

24 Chapter 3 Introduction to the Ox language

3.7 Operations and matrix programming
To a large extent, the same operators are available in Ox as in C or C++. Some of the
additional operators are power (^), horizontal concatenation (~), vertical concatenation
(|) and the Kronecker product (**). One important distinction is that the operators are
also available for matrices, so that, for example, two matrices can be added up directly.
For some operators, such as multiplication, there is a distinction between the dot op-
erators (e.g. .* is element by element multiplication and * is matrix multiplication if
both arguments are matrices). Not available in Ox are the bitwise operators, instead you
need to use the library functions binand and binor.

Because Ox is implicitly typed, the resulting type of the expression will depend on
the types of the variables in the expression. When a mixture of types is involved, the
result is promoted upwards in the order integer, double, matrix. So in an expression
consisting if an integer and a double, the integer will be promoted to a double. An ex-
pression of only integers yields an integer. However, there are two important exceptions
to this rule:
1. integer division is done in floating point and yields a double. This is an important

difference with C, where integer division is truncated to an integer.
2. power expressions involving integers which yield a result too large to be expressed

as an integer give a double result.
To illustrate, we write the Fahrenheit to Celsius example of Kernighan and Ritchie

(1988) in Ox:

#include <oxstd.oxh>

const decl LOWER = 0;
const decl UPPER = 100;
const decl STEP = 20;
main()
{

decl fahr;

for (fahr = LOWER; fahr <= UPPER; fahr += STEP)
print("%3d", fahr, " ",

"%6.1f", (5.0/9.0) * (fahr-32), "\n");
}

which prints:
0 -17.8
20 -6.7
40 4.4
60 15.6
80 26.7
100 37.8

In C we have to write 5.0/9.0, because 5/9 evaluates to zero. In Ox both expressions
are evaluated in floating point arithmetic.

In general we get more more efficient code by vectorizing each program as much as
possible:

3.8 Arrays 25

#include <oxstd.oxh>

const decl LOWER = 0;
const decl UPPER = 100;
const decl STEP = 20;
main()
{

decl fahr = range(LOWER, UPPER, STEP)’;
println("%6.1f", fahr ~ (5.0/9.0) * (fahr-32));

}

• As in the first version of the program, we declare three constants which define the
Fahrenheit part of the table.

• The range() function creates a 1× n matrix with the values LOWER, LOWER+STEP,
LOWER + 2STEP, . . . , UPPER.

• The transpose operator ’ changes this into an n× 1 matrix.
• The conversion to Celsius in the print statement works on the matrix as a whole:

multiplication of a matrix by a scalar is equivalent to multiplication by the scalar of
each element of the matrix.

• The ~ operator concatenates the two column vectors into an n× 2 matrix.
• Finally, the println function (like print, but output is followed by a newline)

is different from the printf in C. In Ox each variable to print is simply specified
sequentially. It is possible, as done here with "%6.1f", to insert formatting strings
for the next variable.
The program prints a table similar to the earlier output:

0.0 -17.8
20.0 -6.7
40.0 4.4
60.0 15.6
80.0 26.7
100.0 37.8

3.8 Arrays
The Ox syntax allows for arrays, so you may use, for example, an array of strings
(often useful), an array of matrices, or even an array of an array of matrices (etc.). The
following program gives an example.

#include <oxstd.oxh>

const decl MX_R = 2;
const decl MX_C = 3;
main()
{

decl i, m;
decl asr = new array[MX_R];
decl asc = new array[MX_C];

for (i = 0; i < MX_R; ++i)
asr[i] = sprint("row ", i);

26 Chapter 3 Introduction to the Ox language

for (i = 0; i < MX_C; ++i)
asc[i] = sprint("col ", i);

m = ranu(MX_R, MX_C);
print("%r", asr, "%c", asc, m);

// or much more compactly:
print("%r", "row " * range(0, sizer(m) - 1, "s"),

"%c", "col " * range(0, sizec(m) - 1, "s"), m);
}

which prints twice:

col 0 col 1 col 2
row 0 0.56444 0.76994 0.41641
row 1 0.15881 0.098209 0.37477

• The new operator declares a new object. That could be a class object, as discussed
in the next chapter, a matrix, a string, or, as used here, an array. The argument in
square brackets is the size of the array. (When creating a matrix in this way, note
that a matrix is always two-dimensional, and needs two arguments, as in: m = new

matrix[2][2].)
• The sprint function returns a string, which is stored in the arrays.
• In print(), we use "%r" followed by an array of strings to specify row labels for

the subsequent matrix. Column labels use "%c".

3.9 Multiple files: using #include and #import

The source code of larger projects will often be spread over several source files. Usually
the .ox file containing the main function is only a few tens of lines. We have already
seen that information about other source files is passed on through included header files.
However, to run the entire program, the code of those files needs to be linked together
as well. Ox offers various ways of doing this. As an example, consider a mini-project
consisting of two files: a source code file and a header file. The third file will contain
the main function.

. samples/myfunc.ox
#include <oxstd.oxh>

static decl s_iCalls = 0; // counter, initialize to 0

MyFunction(const ma)
{

++s_iCalls; // increment calls counter
println("MyFunction has been called ", s_iCalls,

" times and prints:", ma);
}
. .

. samples/myfunc.oxh
MyFunction(const ma);

. .

3.9 Multiple files: using #include and #import 27

The header file myfunc.oxh declares the MyFunction function, so that it can be
used in other Ox files. Note that the declaration ends in a semicolon. The source code
file contains the definition of the function, which is the actual code of the function.
The header of the definition does not end in a semicolon, but is followed by the open-
ing brace of the body of the function. The s iCalls variable is declared outside any
function, making it an external variable. Here we also use the static type specifier,
which restricts the scope of the variable to the myfunc.ox file: s iCalls is invisible
anywhere else (and other files may contain their own s iCalls variable). Variables
declared inside a block of curly braces have a more limited lifetime. Their life starts
when they are declared, and finishes at the closing brace (matching the brace level of
declaration).

It is also possible to share variables between various source files, although there
can be only one declaration (physical allocation) of the shared variable. The following
modifications would do that for the myfunc.ox program:
(1) delete the static keyword from the declaration,
(2) add to myfunc.oxh the line (renaming s iCalls to g iCalls):

extern decl g_iCalls;

Any code which includes myfunc.oxh can now reference or change the g iCalls

variable.

3.9.1 Including the code into the main file

The first way of combining the mini project with the main function is to #include the
actual code. In that case the myfunc.oxh header file is not needed:

. samples/mymaina.ox
#include <oxstd.oxh>
#include "myfunc.ox"

main()
{

MyFunction("one");
}
. .

The result will be just one code file, and mymaina.ox can be run as oxl mymaina.

3.9.2 Importing the code into the main file

The drawback of the previous method of including source code using #include, is that
it can only be done once. That is not a problem in this short program, but is difficult
to ensure if a library is used at many points in a large project. The #import command
solves this problem.

. .samples/mymainc.ox
#include <oxstd.oxh>
#import "myfunc"

28 Chapter 3 Introduction to the Ox language

main()
{

MyFunction("one");
}
. .

Again, mymainc.ox can be run as oxl mymainc.
There is no extension in the argument to #import. The effect is as an

#include "myfunc.oxh" statement followed by marking myfunc.ox for link-
ing.1 The actual linking only happens when the file is run, and the same #import

statement may occur multiple times (as well as in compiled files). So even when the
same file is imported many times, it will only be linked once.

3.9.3 Importing Ox packages

If myfunc.ox would require the maximization package, it could have at the top:

#include <oxstd.oxh>
#import <maximize>

Partial paths can be used. Searching is relative to the OX8PATH environ-
ment variable. For example, if the Arfima package is in its default location of
ox/packages/arfima, we would use:

#import <packages/arfima/arfima>

The distinction between angular brackets and double quotes in the include and im-
port statements is discussed in §13.9.3. Roughly, the <> form should be used for files
which are part of the Ox system, and the double quotes for your own files, which will
not be in the Ox tree.

3.9.4 Separate compilation

Ox source code files can be compiled into Ox object files. These files have the .oxo

extension, and are binary. The format is identical across operating systems, but since
they are binary, transfer from one platform to another has to be done in binary mode.

To compile myfunc.ox into an Ox object file use the -c switch:

oxl -c myfunc

This creates myfunc.oxo (the .oxo extension is automatically appended). Remem-
ber that myfunc.oxo must be recreated every time myfunc.ox changes.

Now, when rerunning mymainc.ox, it will automatically use the .oxo instead of
the .ox file.

Compiled Ox files can be useful for very large files (although even then compila-
tion will be very fast), or if you do not wish to distribute the source files. They are
inconvenient when the code is still under development.

1#import will actually try to find the .oxo file first. If that is not found, it will search for the
.ox file. If neither is found, the program cannot run. More detail is in §13.9.4.

3.10 Object-oriented programming 29

3.10 Object-oriented programming
Object-oriented programming involves the grouping together of functions and variables
in convenient building blocks. These blocks can then be used directly, or as starting
point for a more specialized implementation. A major advantage of object-oriented
programming is that it avoids the use of global variables, thus making the code more
re-entrant: several instances will not conflict wiith each other.

The object-oriented features in Ox are not as sophisticated as in some low-level
languages. However, this avoids the complexity of a language such as C++, while still
providing most of the benefits.

Ox allows you to completely ignore the object-oriented features. However, you will
then not be able to use the preprogrammed classes for data management and simulation.
It is especially in the latter task that we found a considerable reduction in the required
programming effort after writing the base class.

The class is the main vehicle for object-oriented programming. A class is nothing
more than a group of variables (the data) and functions (the actions) packaged together.
This makes it a supercharged struct (or record in Pascal terminology). Inheritance
allows for a new class to add data and functions to the base class, or even redefine
functionality of the base class.

In Ox, the default is that all data members of the class are protected (only visible to
class members), and all function members are public. Like C++, Ox has the virtual
keyword to define functions which can be replaced by the derived class. Classes are
used by dynamically creating objects of that class. No static objects exist in Ox. When
an object is created, the constructor function is called, when the object is deleted, the
destructor function is called. More information on object-oriented programming is
given in §13.5.6. Examples based on the preprogrammed classes are in Ch. 12.

3.11 Style and Hungarian notation
The readability and maintainability of a program is considerably enhanced when using
a consistent style and notation, together with proper indentation and documentation.
Style is a personal matter; this section describes the one I have adopted.

In my code, I always indent by one tab (four spaces) at the next level of control (i.e.
after each opening brace), jumping back on the closing brace.

I have found Hungarian notation especially useful (see e.g. Petzold, 1992, Ch. 1).
Hungarian notation involves the decoration of variable names. There are two elements
to Hungarian notation: prefixing of variable names to indicate type (Table 3.1), and
using case to indicate scope (Table 3.2, remember that Ox is case sensitive).

As an example consider:

#include <oxstd.oxh>

const decl MX_R = 2; /* a constant */
decl g_mX; /* exported matrix */

30 Chapter 3 Introduction to the Ox language

Table 3.1 Hungarian notation prefixes

prefix type example
i integer iX

c count of cX

b boolean (f is also used) bX

fl integer flag flX

d double dX

m matrix mX

v vector (1× n or n× 1 matrix) vX

s string sX

as array of strings asX

am array of matrices amX

a reference in function argument amX

m class member variable m mX

s static external variable (file scope) s mX

g external variable with global scope g mX

fn function reference fnX

Table 3.2 Hungarian notation, case sensitivity

function all lowercase
function (exported) first letter uppercase
static external variable type in lowercase, next letter uppercase

(perhaps prefixed with s)
exported external variable as above, but prefixed with g

function argument type in lowercase, next letter uppercase
local variables all lowercase
constants all uppercase

static decl s_iCount; /* static external variable */

static func1(const pdX)/* argument is pointer to double */
{
}

/* exported function */
Func2(const mX, const asX, const cT, const cX)
{

decl i, m;
}

Func2 expects a cT × cX matrix, and corresponding array of cX variable names.
The c prefix is used for the number of elements in a matrix or string. Note however,
that it is not necessary in Ox to pass dimensions separately. You can ask mX and asX

what dimensions they have:

Func2(const mX, const asX)

3.12 Optimizing for speed 31

{
decl i, m, ct, cx;
cx = columns(mX);
ct = rows(mX);
if (cx != sizeof(asX))

print("error: dimensions don’t match");
}

3.12 Optimizing for speed
Ox is very fast: current benchmarks suggest that it is faster than most (if not all) other
commonly used matrix language interpreters. A program can never be fast enough
though, and here are some tips to achieve even higher speed:

• Use matrices as much as you can, avoiding loops and matrix indexing.
• Use built-in functions where possible.
• When optimizing a program with loops, it usually only pays to optimize the inner

most loop. One option is to move loop invariants to a variable outside the loop.
• Avoid using ‘hat’ matrices, i.e. avoid using outer products over large dimensions

when not necessary.
• Note that matrices are stored by row (the C and C++ default, but transposed from

the Fortran default), so it could sometimes be faster to transpose matrices (i.e. have
data variables in rows instead of columns).

• If necessary, you can link in C or Fortran code, see the separate Ox Developer’s
manual.

Chapter 4

Parallel programming in Ox

4.1 Introduction
Ox provides two ways to implement the parallel computation: using threads or using
processes. In the multi-threaded framework used by parallel for, memory is shared,
and any potential race condition must be prevented by forcing such operations to be
serial.

An alternative approach to the built-in parallelization is to use multiple processes,
as in OxMPI, In that case, each process operates in complete isolation, and shared
operations require a synchronization (communication) between processes. The multi-
processing case is harder to program, but the memory separation provides a neater
framework.

The multi-threaded approach is readily available through just two keywords in Ox:
parallel and serial. However, it is the user’s responsibility to avoid race conditions:
the compiler cannot detect it. Making mistakes can result in wrong outcomes, or even
a crash.

Only certain loops can be made parallel: a minimum requirement is that they are
canonical.

4.2 Canonical for and foreach loops
A for loop is canonical if:
1. the iterator is a local variable,
2. the iterator is an integer,
3. the iterator is not changed in the loop body,
4. the iterator is incremented (or decremented) by an integer constant,
5. the upperbound can be computed before the loop starts,

In particular, it is either the value of a variable, or sizer, sizec, sizerc, sizeof,
rows, columns of a variable.

6. the upperbound is fixed while the loop executes,

32

4.3 Parallel for and foreach loops 33

7. the loop body is a closed statement list.
This means that there is no return statement in the loop, break out of the loop, or
goto in or out of the loop.

Except for the last condition, all are automatically satisfied by a foreach loop.
Here are some examples:

decl i, j, crep = 10, x = zeros(5, 5), i0 = 2;

for (i = 0; i < crep; i += 2) // canonical
{

println("i=", i);
}
for (i = int(i0); i < sizer(x); ++i)// canonical
{ // int() forces integer

println("i=", i);
}
for (i = 0; i < crep; i++) // canonical
{

if (i == 1)
continue; // continue is allowed

println("i=", i);
}

for (i = i0; i < crep; i++) // not canonical
{ // type of i0 unknown

println("i=", i); // at compilation time
}
for (i = 0; i < crep; i++) // not canonical
{ // i modified in body

if (i == 1)
++i;

println("i=", i);
}
for (i = 0; i < crep; i++) // not canonical
{ // body not closed

if (i == 1)
break;

println("i=", i);
}

Ox can determine whether a for or foreach loop is canonical, and use compiled
code for the iteration aspect, which is more efficient. If you use the -v command line
switch, a message will indicate if a loop was optimized this way.

4.3 Parallel for and foreach loops

A canonical for or foreach loop can be run in parallel if there is no dependency
between iterations, i.e. if the ordering of the iterations does not matter. This requirement
is the responsibility of the author, and not verified by Ox. A for loop can be labelled
as parallel:

34 Chapter 4 Parallel programming in Ox

parallel for (i = 0; i < crep; i += 2)
{

println("i=", i);
}

resulting in parallel execution if supported by the run-time system. A foreach loop
can also be labelled as parallel.

The iterations of a loop rarely operate in complete isolation: usually there is an
accumulation of results. This can still be run in parallel, provided that the order in
which it is done does not matter.1 A prime example is the loop of a Monte Carlo
simulation.

4.3.1 Local variables

Local variables are arguments and variables that are declared inside a function — those
within the current scope are declared higher-up inside the current block.

When Ox starts running code in parallel, n threads are created. Each thread has its
own space for local variables (called a stack). Initially these stacks are the same as that
of the main thread (integers and doubles are copied, the remainder are references to the
value in the main thread). When assignment is made, it is to the thread-specific version,
and, as the threads proceed in parallel, the local variables will become different in each
thread. When the parallel section is finished, only the local variables in the main thread
survive, the others are removed. This is useful because it separates local variables,
allowing function calls to be executed in parallel — provided those functions are re-
entrant, i.e. do not use external variables.

So local variables are thread-safe by design. But, as a consequence, they cannot
be used for reduction operations such as accumulating a sum: each thread has it own
version, and the final value is the sum of the part executed by the main thread only.
A local variable that is used for a reduction must be labelled as serial, which is the
responsibility of the programmer, see §4.4.

4.3.2 Global variables

Variables that are declared outside any function or not replicated to each thread: there
is just one version in the program. Writing to a global variable inside parallel code in-
troduces a so-called race condition: if two iterations try to do an update simultaneously
they will overlap, and we cannot be sure of the precise outcome (but it will probably be
wrong). Similarly, an overlapping write and read is a race condition. But overlapping
read operations are always safe. So if a variable is initialized before the loop starts, and
doesn’t change, then there is no problem.

Race conditions can be difficult to notice: the answer may appear to be random,
or even be correct most of the time. They can also result in a crash when memory
allocation and deallocation overlap (e.g. changing dimensions of a matrix while trying
to read it at the same time).

1Rounding error may still accumulate differently.

4.4 Serial variables 35

Good rules of thumb are:
1. never write to a global variable unless it is serial and a safe operation,
2. never read and write to a global variable in the same parallel block.

4.3.3 Member variables of objects

If an object is created within a thread (as a local variable in the parallel loop), its mem-
bers are unique to a thread (except the static ones), and safe to use. Remember that
Ox does not have garbage collection for class objects: each new must be matched by a
delete within the block.

If an object is shared between threads, the member variables behave like global
variables, and similar care is required. Also see the discussion at the end of §4.11.

4.4 Serial variables
Ox variables can be declared as serial. In that case only one thread at a time is able
to modify the variable, provided one of the following compound assignment operations
is used: *= /= += -= ~= |= .*= ./= ++ --. When one thread updates,
any other thread trying to do the same will be forced to wait.

The following code illustrates the use of serial:

decl i, j, crep = 10;

decl sum1 = 0;
parallel for (i = 0; i < crep; ++i)
{

sum1 += 1;
}
println("sum1=", sum1);

serial decl sum2 = 0;
parallel for (i = 0; i < crep; ++i)
{

sum2 += 1;
}
println("sum2=", sum2);

prints

sum1=3
sum2=10

The precise value of sum1 depends on the amount of work allocated to the main thread.
However, it is clearly incorrect.

The value of sum2 is correct though: only one thread at a time was allowed to
update, so, while one was doing this, the others had to wait. The price we pay for this
is slower code.

Simple assignment (=) is not affected by declaring a variable as serial. The reason
is that simple assignment in a parallel loop is really only useful for a thread-specific
local variable. The exception is assigning a value to an iteration-specific location in a

36 Chapter 4 Parallel programming in Ox

matrix or array. Such updating of matrix elements is safe, provided the matrix is pre-
allocated, and each iteration updates a different element. So no serial is required in
this code:

decl sum3 = zeros(1, crep);
parallel for (i = 0; i < crep; ++i)
{

sum3[i] = 1;
}
println("sum3=", sumr(sum3));

4.5 Serial functions
Functions calls can be problematic if the functions are not re-entrant, which is usually
caused by the fact that some internal state is maintained in a global variable. The
solution is again to disallow overlapping calls to such functions.2 For this reason all
Ox functions that do file or text input/output are serial (such as println, sprint,
loadmat, savemat, etc.). Calls to graphics functions are also serial.

Note that functions written in Ox code cannot be labelled as serial, but calls to
functions inside dynamic-link libraries can.

Compare the following two parallel loops:
parallel for (i = 0; i < crep; ++i)
{

println("i=", i);
}
parallel for (i = 0; i < crep; ++i)
{

print("i=");
println(i);

}

In the first version, the call to println is serial, so only executed in one thread, and
therefore the output appears together (although the order is mixed up). In the second
version, on a quad core computer, four of the first print statements are executed seri-
ally, but before the second call, resulting in the (truncated) output on the right:

--- println("i=", i); --- --- print("i="); println(i); ---
i=0 i=i=i=i=0
i=3 8
i=6 3
i=8 6
i=1 i=i=i=i=1
i=4 9

4.6 Serial sections
Sections of code may need to be executed together serially. This can be achieved by
creating a serial block. For example, to keep the print statements together:

2If possible it would be better to remove the dependency on the global variable entirely.

4.7 Parallel if 37

parallel for (i = 0; i < crep; ++i)
{

// lengthy computation running in parallel
//
// end of section with length computation
serial
{

print("i=");
println(i);

}
}

Parallel computations are not nested: if a parallel loop contains another parallel
loop, the latter is not executed in parallel. Relatedly, any parallel loops inside a serial
section will not be executed in parallel, as e.g. in:

serial
{

parallel for (i = 0; i < crep; ++i)
{
}

}

4.7 Parallel if

The parallization can be made conditional:

#include <oxstd.oxh>
main()
{

decl crep = 10;

for (decl j = 0; j < 2; ++j)
{

parallel if (j == 0) for (decl i = 0; i < crep; ++i)
{

println("j=", j, " i=", i);
}

}
}

In this example the nested loop is only performed asd a parallel loop if j has the value
zero. The output (printed in two columns) shows this:

j=0 i=0 j=1 i=0
j=0 i=3 j=1 i=1
j=0 i=1 j=1 i=2
j=0 i=2 j=1 i=3
j=0 i=8 j=1 i=4
j=0 i=4 j=1 i=5
j=0 i=9 j=1 i=6
j=0 i=7 j=1 i=7
j=0 i=6 j=1 i=8
j=0 i=5 j=1 i=9

38 Chapter 4 Parallel programming in Ox

4.8 Random number generation
An important case of a non-reentrant function is typical random number generation:
the seed is maintained in the background, and is updated every time a ‘random’ draw
is made. It would be possible to force random number generation to be serial, but that
would incur a significant speed penalty. Moreover, because the ordering of the loops
could be different every time the program is run, different outcomes will attain. The
solution that Ox adopts is to give each iteration the same initial seed, but colour it with
the iterator.
initial state: Starting seed is s0.
before loop: ranloopseed(0, -1) is called (internally):

set the loop seed to the initial seed: s−1 = s0.
iteration i: ranloopseed(i, 0) is called just before entering the next iteration:

set the seed to si, which is s−1 coloured with the loop counter i.
after loop: ranloopseed(0, 1) to return to normal random number behaviour:

reset the seed to s0, then advance the seed by one step to s1 (but only if random
numbers were generated).
It is necessary to advance the seed when random numbers are used: otherwise two
subsequent parallel for loops would use the same random number stream.
This approach is only adopted for the outermost parallel loops, even when made se-

quential through embedding in a serial block. As a result, the outcome of a simulation
experiment using a parallel loop is the same regardless of the number of threads (even
when using a single thread, when Ox is run with the -rp1 commandline argument).

This loop colouring is also adopted in OxMPI (in that case it has to be implemented
explicitly by calls to ranloopseed), so that OxMPI and parallel for outcomes can
be the same.

4.9 Monte Carlo example 39

4.9 Monte Carlo example

. samples/simulation/parallel mc.ox
#include <oxstd.oxh>

Run(cRep, vBeta, dRho_dgp, cT)
{

decl beta_dgp = vec(vBeta); // DGP parameters
decl cn = sizerc(beta_dgp);
decl asx = new array[cn], k;

foreach (decl asx_k in asx[k]) // asx_k not used
{ // create names

asx[k] = sprint("x", k + 1);
}

ranseed(-1);

decl i, mcoefs = zeros(cn, cRep), time = timer();
serial decl sumcoefs = 0;

parallel for (i = 0; i < cRep; i++)
{

decl vcoefs;
decl X = rann(cT, cn);
decl y = X * beta_dgp + rann(cT, 1);

olsc(y, X, &vcoefs); // do the regression

mcoefs[][i] = vcoefs; // no need for serial
sumcoefs += vcoefs; // must be serial

}
println("%r", asx, beta_dgp ~ meanr(mcoefs) ~ sumcoefs / cRep);
println("M=", cRep, " overall time:", timespan(time));

}
main()
{

decl cm = 1000000;

Run(cm, zeros(1, 5), 0.9, 100);

serial
{

Run(cm, zeros(1, 5), 0.9, 100);
}

}
. .

The output of this program is (the first three lines were added because we used the -v

command-line switch):

Opening source file: parallel_mc.ox
parallel_mc.ox (12): Remark: canonical loop has been compiled
parallel_mc.ox (29): Remark: canonical loop is parallel

40 Chapter 4 Parallel programming in Ox

x1 0.00000 8.6793e-05 8.6793e-05
x2 0.00000 0.00017182 0.00017182
x3 0.00000 0.00015306 0.00015306
x4 0.00000 6.3777e-05 6.3777e-05
x5 0.00000 -3.2096e-05 -3.2096e-05
M=1000000 overall time: 0.98

x1 0.00000 8.6793e-05 8.6793e-05
x2 0.00000 0.00017182 0.00017182
x3 0.00000 0.00015306 0.00015306
x4 0.00000 6.3777e-05 6.3777e-05
x5 0.00000 -3.2096e-05 -3.2096e-05
M=1000000 overall time: 5.93

The timings depend on the hardware; in this case a twelve core computer was used.
The parallel run is six times faster, and the results are the same in both cases, because
both experiments start from the Ox default initial seed.

Removing the parallel keyword gives different results as the colouring of the
seed by the iteration counter is omitted:
x1 0.00000 -6.4666e-005 -6.4666e-005
x2 0.00000 2.1149e-005 2.1149e-005
x3 0.00000 -2.4469e-005 -2.4469e-005
x4 0.00000 -6.3575e-005 -6.3575e-005
x5 0.00000 0.00013504 0.00013504
M=1000000 overall time: 5.42

4.10 Monte Carlo example using OxMPI
Using OxMPI requires installing the package, as well as the MPI run-time. When this
is done successfully, the Loop::RunEx function can be used to run the experiment on
multiple processes. This in turns requires that the body is expressed as a function, and
that other shared information is communicated through shared variables:
. packages/oxmpi/parallel mc oxmpi.ox
#include <oxstd.oxh>
#import <packages/oxmpi/loop>

static decl s_vBeta_dgp, s_cT;

Run_i(const i)
{

decl vcoefs;
decl X = rann(s_cT, sizerc(s_vBeta_dgp));
decl y = X * s_vBeta_dgp + rann(s_cT, 1);

olsc(y, X, &vcoefs); // do the regression
return vcoefs;

}

Run(cRep, vBeta, dRho_dgp, cT)
{

decl beta_dgp = vec(vBeta); // DGP parameters
decl cn = sizerc(beta_dgp);

4.11 Monte Carlo example using the Simulator class 41

decl asx = new array[cn], k;

foreach (decl asx_k in asx[k]) // asx_k not used
{ // create names

asx[k] = sprint("x", k + 1);
}
ranseed(-1);

decl i, mcoefs = zeros(cn, cRep), time = timer();
decl creject;

s_vBeta_dgp = beta_dgp;
s_cT = cT;

mcoefs = Loop::RunEx(0, Run_i, cRep, 0, &creject);

println("%r", asx, beta_dgp ~ meanr(mcoefs));
println("M=", cRep, " overall time:", timespan(time));

}
main()
{

decl cm = 1000000;

Run(cm, zeros(1, 5), 0.9, 100);
}
. .

In this case, on the same 12 core (24 threads) computer, using 12 processes:
x1 0.00000 8.6793e-05
x2 0.00000 0.00017182
x3 0.00000 0.00015306
x4 0.00000 6.3777e-05
x5 0.00000 -3.2096e-05
M=1000000 overall time: 0.80

So running at a comparable speed to the code with the parallel loop. The difference
between the two approaches tends be small when each iteration is demanding and the
start-up cost becomes a small part. The MPI version can be run on multiple machines.

4.11 Monte Carlo example using the Simulator class
The Simulator class is the successor to the Simulation class (from Ox 7 onwards; the
old class is still available, but cannot be used in parallel). The main changes are:
1. The class is split in SimulatorBase and Simulator to facilitate different top layers.
2. There is now a Prepare function that is called prior to the parallel loop.
3. There are no GetCoefficients, GetPvalues and GetTestStatistics func-

tions, because these were non-reentrant, and therefore prevented parallel use. In-
stead, the Generate function returns an array with four values: integer (1 for suc-
cess), coefficients, pvalues, and tests.

4. IsTwoSided is replaced by SetTwoSided which should be called as part of the DGP
initialization.

42 Chapter 4 Parallel programming in Ox

The next listing rewrites the experiment using the Simulator class.
. packages/oxmpi/parallel mcsim.ox
#include <oxstd.oxh>

#ifdef OX_MPI
#import <packages/oxmpi/simulator> // MPI version

#else
#import <simulator> // import default simulation class

#endif

class MySim : Simulator // inherit from simulation class
{

MySim(cRep, vBeta, cT); // constructor
~MySim(); // destructor
Generate(const iRep, const cT, const mxT);

decl m_vBeta_dgp;
};
MySim::MySim(cRep, vBeta, cT)
{

m_vBeta_dgp = vec(vBeta);
decl cn = sizerc(m_vBeta_dgp);
decl asx = new array[cn], k;

foreach (decl asx_k in asx[k]) // asx_k not used
{ // create names

asx[k] = sprint("x", k + 1);
}

Simulator(cT, cT, cRep, FALSE, -1, <>, m_vBeta_dgp);
SetCoefNames(asx);

}
MySim::~MySim()
{
}
MySim::Generate(const iRep, const cT, const mxT)
{

decl vcoefs;
decl X = rann(cT, sizerc(m_vBeta_dgp));
decl y = X * m_vBeta_dgp + rann(cT, 1);

olsc(y, X, &vcoefs); // do the regression

return {1, vcoefs, <>, <>}; // 1 indicates success, 0 failure
}

main()
{

decl cm = 1000000, time;
decl exp = new MySim(cm, zeros(1, 5), 100);

time = timer();
exp.Simulate();
println("time=", timespan(time));

4.11 Monte Carlo example using the Simulator class 43

time = timer();
exp.Simulate_serial();
println("time=", timespan(time));

delete exp;
}
. .

I had to change my programming style to allow Monte Carlo experiments to be run
in parallel. In Ox version 6, I would use a dgp and a model member that would hold
the data for that replication. Because there was only a single object shared between
iteration, as e.g.:

SimArTest1::Generate(const iRep, const cT, const mxT)
{

// ...
y = m_dgp.Generate(mxT); // generate the data

m_sys.Renew(y[][0], "YA", 0); // store in database
m_sys.Renew(y[][1], "YB", 0);
m_sys.Renew(y[][2], "YC", 0);
// ...
return TRUE;

}

the code could not be used in parallel.
Now I clone the model object, so that a loop specific version is modified. This

cloned object receives the data:

SimArTest1::Generate(const iRep, const cT, const mxT)
{

decl model = clone(m_sys), tests;

// generate and store data
m_dgp.StoreInDatabase(m_dgp.GenerateTo(mxT), model,

model.GetVarIndex("YA"), model.GetVarIndex("ZA"), -1, 0);

// ...
delete model;
return {1, <>, tests[1][], tests[0][]};

}

A call to clone implies that a new object is allocated, so the matching delete is
required to prevent a memory leak.

Here are a few more examples of code that works in parallel:

fn_ok(const arg)
{

decl xi;
serial decl x = 0;
decl mx = zeros(crep, 1);
parallel for (i = 0; i < crep; ++i)
{

xi = arg + i; // thread-specific storage
x += xi; // serial update
mx[i] += xi; // iteration-specific storage

44 Chapter 4 Parallel programming in Ox

}
}

And code that fails:
fn_errors(const arg)
{

serial decl xi;
decl x = zeros(arg);
decl mx = zeros(crep, 1);
parallel for (i = 1; i < crep; ++i)
{

xi = arg + i; // error: should be thread-specific storage
x += xi; // error: thread-specific update
mx[i - 1] += xi;// error: depends on other iteration:

// i-1 may not have been done yet
}

}

It is a good idea to run your parallel Ox code first (with fewer iterations) with -rp1

(one thread) and without (all threads). Because random number behaviour is the same
in both cases (but different when the parallel keyword is omitted from the loop), the
outcomes should be the same.

Chapter 5

How to . . .

How to compute/get/achieve:
• bootstrap a data set, see under: ‘take a random sample . . . ’.
• censored random variates, for example, a random normal censored at a and b (don’t

forget any dots; the setbounds() function can also be used):
x = rann(1000,1);
y = x .< a .? a .: x .> b .? b .: x;
y = setbounds(x, a, b);

• check if all elements in a matrix are equal to a value, 1 say:
if (x == 1)

• check if no element in a matrix is equal to a value, 1 say:
if (x != 1)

• check if any element in a matrix is not equal to a value, 0 say:
if (!(x == 0))
if (max(x .== 0))

• check if any element in a matrix is equal to a value, 1 say:
if (any(x .== 1))

• check if two matrices, x and y, are equal to each other:
if (x == y)

• check if two matrices, x and y, have any elements in common:
if (any(x .== y))

• concatenation of columns in a loop (inserting columns of zeros):
m = <>;
for (i = 0; i < columns(mx); ++i)
{

m ~= mx[][i];
m ~= 0;

}

Such concatenation can be relatively slow if columns(m) is large. An alternative is
to pre-allocate the destination matrix:
m = zeros(rows(mx), 2 * columns(mx));
for (i = 0; i < columns(mx); i += 2)
{

m[][i] = mx[][i];
}

45

46 Chapter 5 How to . . .

• concatenation of rows in a loop
decl m = <>;
for (i = 0; i < rows(mx); ++i)

m |= mx[i][];

Again, pre-allocation is more efficient.
• correlation matrix out of a variance matrix:
decl sdi = 1 ./ sqrt(diagonal(mvar));
corrm = sdi .* mvar .* sdi’;

• create a tridiagonal matrix, symmetric, n× n:
a * unit(n) + b * lag0(unit(n), 1) + b * lag0(unit(n), -1);

• delete rows with certain values:
deleter(mx, value);

or use:
mx[vecindex(!sumr(mx .== value))][];

• element-by-element maximum (dot-maximum) (or minimum, etc.) of two matrices,
or of a matrix and a number:
x = max(a, b);
x = max(a, 3);

• factorial: see under the loggamma() and gammafact() library functions, e.g. for
x!:
fact = exp(loggamma(x + 1));
fact = gammafact(x + 1);

• gamma function: see under the loggamma() and gammafact() library functions;
for the incomplete gamma function, see under gammafunc().

• index of the maximum value in each column
maxindc = maxcindex(x);

Another possibility:
maxindc = limits(x)[2][];

• maximum of each column:
maxc = maxc(x);

• median of each data column:
quantilec(x);

• mode of a data column:
max(x[][0]);

• N [µ,Σ] random numbers
chol_t = choleski(mSigma)’; // use P’
eps = rann(ct, cn) * chol_t + mMu;

• N [µ, σ2] quantiles
z = quann(p);
x = z .* sqrt(sigma2) + mu;

• Numerical variance
Following maximum likelihood estimation, compute the second derivative matrix
Q using Num2Derivative. Then −Q−1 is an estimate of the parameter variance
matrix.

• π (this requires #include <oxfloat.oxh>):
pi = M_PI;

• (homogeneous) Poisson process, simulate first n arrival times:
cumulate(ranexp(n, 1, 1.0));

47

• (homogeneous) Poisson process with rate µ, simulate times of events up to time t:
t * ranuorder(ranpoisson(1, 1, mu * t));

• quadratic form:
mom = x’x;
mom = outer(x’, <>);

• replace values exceeding a certain value:
x = y .> 3 .? y .: 3;
x = y .> z .? y .: z;

• select rows with certain values:
selectr(mx, value);

or use:
mx[vecindex(sumr(mx .== value))][];

• skewness and kurtosis:
mxs = standardize(mx);
n = columns(mx);
skew = sumr(mxs .^ 3) / n;
kurt = sumr(mxs .^ 4) / n;

or use the moments library function.
• sorted column index of a matrix x sorted by the first column (column zero):
sortindex = sortcindex(x[][0]);
// or use:
//sortindex =
// sortbyc(x ~ range(0, rows(x)-1)’, 0)[][columns(x)];

// Now sortindex can be used to sort
// another matrix y conformably:
z = y[sortindex][];

• sequence from a to b of n + 1 equally spaced points (see under the range library
function for more information):
step = (b - a) / n;
seq = range(0, n) *step + a;

• substitute certain values only, say change all the 3’s to 1 in a matrix x:
x = x .== 3 .? 1 .: x;

• take a random sample of size n with replacement from the rows of a matrix x:
y = x[ranu(1,n) * rows(x)][];

• take a random sample of size n without replacement from the rows of a matrix x
(this requires oxprob.oxh):
y = x[ransubsample(n, rows(x) - 1)][];

Or using ranindex which returns unsorted random indices:
y = x[ranindex(n, rows(x))][];

• trim the matrix x by deleting the first top and the last bot rows:
trim = x[top:rows(x)-bot-1][];

• truncated random variates (i.e. random numbers from truncated distributions, see
Devroye, 1986, p.39), with the distribution F truncated on the left at a, and on the
right at b:

F−1 {F (a) + u× [F (b)− F (a)]} ,

where u is a uniform random number. In Ox code, for a random normal, truncated
at a and b:

48 Chapter 5 How to . . .

pa = probn(a); // Pr{value <= a}
// pa = 0 for no left truncation

pb = probn(b); // Pr{value <= b}
// pb = 1 for no right truncation

y = quann(pa + ranu(1000,1) * (pb - pa));

• two-sided critical values from a t(k) distribution:
pvalue = 2 * tailt(fabs(x), k);

• unsorting a matrix which is to be sorted by a column i.
sorted = sortbyc(x ~ range(0, rows(x)-1)’, i)
unsorted = sortbyc(sorted, columns(sorted) - 1);

• y log y:
y .* log(y .> 0 .? y .: 1);

Chapter 6

Numerical accuracy

Any computer program that performs numerical calculations is faced with the problem
of (loss of) numerical accuracy. It seems a somewhat neglected area in econometric
computations, which to some extent could be owing to a perception that the gradual
and steady increase in computational power went hand in hand with improvements in
accuracy. This, however, is not the case. At the level of software interaction with hard-
ware, the major (and virtually the only) change has been the shift from single precision
(4-byte) floating point computation to double precision (8-byte). Not many modern
regression packages have problems with the Longley (1967) data set, which severely
tests single precision implementations. Of course, there has been a gradual improve-
ment in the understanding of numerical stability of various methods, but this must be
offset against the increasing complexity of the calculations involved.

Loss of numerical accuracy is not a problem, provided we know when it occurs and
to what extent. Computations are done with finite precision, so it will always be possi-
ble to design a problem with analytical solution which fails numerically. Unfortunately,
most calculations are too complex to precisely understand to what extent accuracy is
lost. So it is important to implement the most accurate methods, and increase under-
standing of the methods used. The nature of economic data will force us to throw away
many correct digits, but only at the end of the computations.

Real numbers are represented as floating point numbers, consisting of a sign, a
mantissa, and an exponent. A finite number of bytes is used to store a floating point
number, so only a finite set can be represented on the computer. The main storage size
in Ox is 8 bytes, which gives about 15 to 16 significant digits. Two sources of error
result. The first is the representation error: most numbers can only be approximated on
a computer. The second is rounding error. Consider the machine precision ϵm: this is
the smallest number that can be added to one such that the result is different from one:

ϵm = argminϵ (1 + ϵ ̸= 1) .

So an extreme example of rounding error would be (1 + ϵm/10)− 1, where the answer
would be 0, rather than ϵm/10. In Ox: ϵm ≈ 2.2× 10−16.

49

50 Chapter 6 Numerical accuracy

−1.0 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2

35000

37500

40000

42500

Figure 6.1 AR(1) grid of Longley data

Due to the accumulation of rounding errors, it is possible that mathematically equiv-
alent formulae can have very different numerical behaviour. For example, computing
V [x] as 1

T

∑
x2i − x̄2 is much less stable than 1

T

∑
(xi − x̄)

2. In the first case, we
potentially subtract two quite similar numbers, resulting in cancellation of significant
digits (it is even possible to get a negative number). A similar cancellation could occur
in the computation of inner products (a very common operation, as it is part of matrix
multiplication).

The Windows version of Ox accumulates inner products in extended 10-byte reals,
leading to a higher accuracy. In general, one can expect small difference in the results
from computations between versions of Ox. Often these are unnoticeable in the accu-
racy used for printing. The following code example can show the difference between 8
and 10-byte accumulation:

#include <oxstd.oxh>
#include <oxfloat.oxh>

main()
{

decl x, y;

x = <DBL_MAX; DBL_MAX; DBL_MAX-1;
DBL_MAX; DBL_MAX>;

y = <10; 10; 1; -10; -10>;

print("%20.16g", x’y);
}

When using extended precision for inner products, it prints the value for DBL MAX (see
Ch. 9) else it prints infinity. When the computations work, it also shows that DBL MAX

- 1 equals DBL MAX.
An interesting example of harmless numerical inaccuracies is in the case of a grid

plot of an autoregressive parameter based on the concentrated likelihood function of an
AR(k) model. Rounding errors make the likelihood function appear non-smooth (not
differentiable). This tends to occur in models with many lags of the dependent variable

51

-2 0 2

207.5

210

212.5

-2 0 2

210

211

212

213

-2 0 2 4

209

210

211

212

213

-4 -2 0 2

205

210

-2 0 2 4

210

211

212

213

-2 0 2

209

210

211

212

213

-2 0 2

207.5

210

212.5

-2 0 2

210

212

-2 0 2

210

212

Figure 6.2 Likelihood grid of Klein model I

and a high autoregressive order. It also occurs in an AR(1) model of the Longley data
set, see Fig. 6.1, which is a grid of 2000 steps between −1 and 0, done in PcGive
(ignoring the warning that numerical accuracy is endangered).

It is important to distinguish numerical accuracy from other problems that may
occur. Multicollinearity, for example, is first and foremost a statistical problem. A
certain parametrization of a model might make the estimates of one or more parameters
statistically imprecise (cf. the concept of ‘micronumerosity’ playfully introduced by
Goldberger in Kiefer, 1989). This imprecision could be changed (or moved) by altering
the specification of the model. Multicollinearity could induce numerical instability,
leading to loss of significant digits in some or all results.

Another example is the determination of the optimum of a non-linear function that
is not concave. Here it is possible to end up in a local optimum. This is clearly not
a problem of numerical stability, but inherent to non-linear optimization techniques.
A good example is provided by Klein model I. Figure 6.2 provides a grid plot of the
FIML likelihood function for each parameter, centred around the maximum found with
the 2SLS estimates as a starting point. These grids are of a different type from the AR
grid in Fig. 6.1. In the former, all parameters but one are kept fixed, whereas the AR
grid graphs the concentrated likelihood. In the case of one autoregressive parameter,
the actual optimum may be read off the graph, as is the case in the AR grid plot above.

A matrix frequently used to show the limitations of numerical techniques is the
Hilbert matrix. A Hilbert matrix of dimension n, Hn, has elements

hij = (i+ j + 1)
−1
, i, j = 0, 1, . . . , n− 1.

52 Chapter 6 Numerical accuracy

For example:

H4 =


1/1 1/2 1/3 1/4

1/2 1/3 1/4 1/5

1/3 1/4 1/5 1/6

1/4 1/5 1/6 1/7


This matrix is very ill-conditioned, and many computations involving Hn break down
even for n as small as 10. The inverse and determinant of Hn are known analytically.
Barnett (1990) gives the determinant:

det(Hn) =

n−1∏
k=0

(n− k − 1)!(n− k − 1)!k!

(n+ k)!
.

We could use the loggamma function to compute the (reciprocal of the) determinant:
log Γ(z + 1) = log(z!). Then we can make a stable computation up to n = 23.
At n = 24 the exp function overflows. Restricting ourselves to the logarithm of the
determinant, we can go quite a bit further. The determinant function breaks down
much earlier: at n = 4 we have about 13 significant digits correct, at n = 10 just 5. At
n = 11, the function reports that the matrix is singular. If we scale the matrix to keep
the determinant under control, we get the message that the determinant is unreliable at
n = 11, which is borne out by only two correct digits. Beyond that, there is no correct
answer from the determinant function; using the logdet function does not help.

To conclude this chapter, we show that using floating point for computations which
should result in integers could lead to unexpected results. Most of the time conversion
to an integer works, but not always. The following code has been especially written to
show that:

#include <oxstd.oxh>

intfuzzy(const d)
{

return d > 0 ? int(d * (1 + fuzziness(0)/2))
: int(d * (1 - fuzziness(0)/2));

}
main()
{

decl i, j;

for (i = 322, j = 122; i < 327; ++i, ++j)
println("%20.16f", (i*0.1 - 20) * 10, " ",

"%5d", int(((i*0.1) - 20) * 10) - j,
"%5d", int(((i*0.1) - 20) * 10),
"%5d", int(floor(((i*0.1) - 20) * 10)),
"%5d", int(ceil(((i*0.1) - 20) * 10)));

for (i = 322, j = 122; i < 327; ++i, ++j)
println("%20.16f", (i*0.1 - 20) * 10, " ",

"%20.16f", (i*0.1 - 20) * 10 * (1+fuzziness(0)/2),
"%5d", intfuzzy(((i*0.1) - 20) * 10) - j);

}

53

which has output on Windows (note that there could be minor differences on other
platforms):

122.0000000000000300 0 122 122 123
123.0000000000000400 0 123 123 124
123.9999999999999900 -1 123 123 124
125.0000000000000000 0 125 125 125
126.0000000000000100 0 126 126 127

122.0000000000000300 122.0000000000061200 0
123.0000000000000400 123.0000000000061800 0
123.9999999999999900 124.0000000000061800 0
125.0000000000000000 125.0000000000062400 0
126.0000000000000100 126.0000000000063100 0

The last two zeros in the floating point print-out are beyond the precision, so can
be ignored. We see however, that even then the results are not exact: in general most
integers cannot be represented exactly in floating point notation (this is the representa-
tion error mentioned earlier). Once we start computing, these inexactitudes propagate.
Conversion to an integer involves truncation, hence we find 123 for the third value, and
not 124 as expected. This also affects the floor and ceil function. (Another example
of this effect is discussed under the range library function.)

There is a potential solution, as shown in the code. Add a little bit to positive
numbers (subtract for negative numbers), where the little bit is a fraction determined
by the current fuzziness value. This is implemented in the truncf library function.
Alternatively, one could round to the nearest integer, using the round function.

Note that, when indexing a matrix by another matrix, a problem like this could occur
when the indices are the result from computation, rather than direct storage. Internally,
the indices are converted to integers by truncation, so you could decide to round first.
When using random indices (e.g. in bootstrapping), such rounding will produce indices
out of range, and truncation is precisely what is required.

Part II

Function and Language
Reference

Chapter 7

Function summary

This chapter lists all library functions by category, and gives a brief description. More
detailed descriptions with examples follow in Chapters 8–12.

date and time functions
date returns a string with the current date
dayofcalendar translates a date in the day of the calendar
dayofeaster finds the calendar date of Easter
dayofmonth finds the n-th weekday in the month
dayofweek translates a date in the day of the week
time returns a string with the current time
timeofday translates the time component of a calendar index
timer returns an integer representing the current time
timespan returns the lapsed time
timestr returns a string from no of seconds since 1 Jan 1970
timing returns date/time as no of seconds since 1 Jan 1970
today returns current date/time as no of seconds since 1 Jan 1970

general functions
any returns TRUE if any element is TRUE
arglist get the argument list specified on the command line
binand binary and operation
bincomp binary bit-wise complement operation
binor binary or operation
columns get number of columns of argument (0 for int,double)
countc count elements in columns in specified intervals
countr count elements in rows in specified intervals
discretize count elements in columns in regularly-spaced intervals
fuzziness set fuzziness parameter
isdotfeq tests for dot fuzzy equality
isdotinf returns boolean matrix from test for infinity

57

58 Chapter 7 Function summary

isdotmissing returns boolean matrix, 1 for missing values (.NaN,±.Inf)
isdotnan returns boolean matrix from test for .NaN
iseq tests for equality with fuzziness 0
isfeq tests for fuzzy equality
ismissing tests for the presence of a missing value (.NaN,+.Inf,-.Inf)
isnan tests for the presence of .NaN
limits maximum/maximum values in matrix plus location
max maximum value in arguments
maxc maximum value of each column
maxcindex row index of the maximum value of each column
maxr maximum value of each row
min minimum value in arguments
minc minimum value of each column
mincindex row index of the minimum value of each column
minr minimum value of each row
prodc compute column products
prodr compute row products
rows get number of rows of argument (0 for int,double)
sizec get number of columns of argument (1 for int,double)
sizeof same as rows
sizer get number of rows of argument (1 for int,double)
sizerc get total number of elements of argument (1 for int,double)
sumc compute column sums
sumr compute row sums
sumsqrc compute column sum of squares
sumsqrr compute row sum of squares
va arglist needed to access arguments in a variable argument list

graphics functions
CloseDrawWindow close the drawing window
Draw draw a matrix against an x-axis
DrawAcf draw an ACF (correlogram) and/or PACF
DrawAdjust adjust most recent draw object
DrawAxis draw an axis
DrawAxisAuto draw an automatic axis
DrawBoxPlot draw a box plot
DrawCorrelogram draw a correlogram
DrawDensity draw a histogram and/or density
DrawHistogram draw a histogram from vector of heights
DrawLegend draw the legend
DrawLine draw a line
DrawMatrix draw a matrix against an x-axis
DrawPLine draw a line (pixel coordinates)
DrawPSymbol draw a symbol (pixel coordinates)
DrawPText draw text (pixel coordinates)
DrawQQ draw a QQ plot

59

DrawSpectrum draw a spectral density
DrawSymbol draw a symbol
DrawT draw a matrix against time
DrawText draw text
DrawTitle set the title text
DrawTMatrix draw a matrix against time
DrawX cross plot of a matrix against a vector
DrawXMatrix cross plot of a matrix against a vector
DrawXYZ draw 3-dimensional graph
DrawZ add error bar/band/fan/Z variable
SaveDrawWindow save the drawing to a file
SetDraw set drawing defaults
SetDrawWindow set the name of the drawing window
SetTextWindow set the name of the text window
ShowDrawWindow show the drawing window

input/output
eprint print to stderr
fclose close a file
fcopy copies a file
feof tests for end of file
fexists tests if a file exists
fflush flushes the file buffer
fopen open a file
format set default print format
fprint print to a file
fprintln as printf, ensures the next output will be on a new line
fread read data in binary format from a file
fremove removes a file
fscan read from a file
fseek gets or repositions the file pointer
fsize get the file size in bytes
ftime get the file’s modification time
fwrite write data in binary format from a file
getfiles get list of files matching the specified mask
getfolders get list of folders matching the specified mask
loadmat load a matrix
loadsheet load an entire sheet from a spread sheet file as an array
print print to stdout
println as print, ensures the next output will be on a new line
savemat save a matrix
savesheet save a two-dimensional array or matrix in a .xlsx file
scan read from the console
sprint print to a string
sprintbuffer resize the sprint buffer
sscan read from a string

60 Chapter 7 Function summary

is type functions
classname returns the class name of a class object
clone returns the clone of a class object
isarray tests if argument is an array
isclass tests if argument is a class object
isdouble tests if argument is a double
isfile tests if argument is a file
isfunction tests if argument is a function
isint tests if argument is an integer
ismatrix tests if argument is a matrix
ismember tests if a class object has a specified member
isstring tests if argument is a string

mathematical functions
bessel bessel functions of order 0 and 1
betafunc incomplete beta integral
binomial binomial coefficient
cabs complex absolute value
cdiv complex division
ceil ceiling
cerf complex error function
cexp complex exponent
clog complex logarithm
cmul complex multiplication
csqrt complex square root
dawson Dawson integral
dfft discrete Fourier transform
erf error function
exp exponent
expint exponential integral Ei
fabs absolute value
factorial factorial
fft fast Fourier transform, pads to power of two
fft1d fast Fourier transform, any sample size
floor floor
fmod floating point remainder
gammafact gamma function (related to factorial)
gammafunc incomplete gamma function
idiv integer division
imod integer remainder
log natural logarithm
log10 base-10 logarithm
loggamma logarithm of gamma function
polygamma derivatives of loggamma function
pow dot-power (alternative to .^)

61

round rounds to nearest integer
sqr square
sqrt square root
trunc truncate towards zero
truncf fuzzy truncation towards zero
matrix creation
constant create a matrix and fill with a value
diag create matrix with specified vector on diagonal
nans create a matrix of .NaN
ones create a matrix of ones
range create a matrix consisting of a range of numbers (trend)
toeplitz create a symmetric Toeplitz matrix
unit create an identity matrix
zeros create a matrix of zeros

matrix decomposition
choleski Choleski decomposition of symmetric positive definite matrix
decldl square root free Choleski decomposition of sym.pd. matrix
decldlband Choleski decomposition of sym.pd. band matrix
declu LU decomposition
decmgs QR decomposition using modified Gram-Schmidt
decqr QR decomposition
decqrmul applies Q from the QR decomposition to compute Q′Y
decqrupdate update a QR decomposition via Givens rotations
decschur real Schur decomposition
decschurgen real generalized Schur decomposition
decsvd singular value decomposition
eigen eigenvalues of matrix
eigensym eigenvalues of symmetric matrix
eigensymgen solves generalized symmetric eigen problem
polydiv divides two polynomials
polyeval evaluates a polynomial
polymake gets polynomial coefficients from the (inverse) roots
polymul multiplies two polynomials
polyroots computes the (inverse) roots of a polynomial
solveldl solves AX=B when A is decomposed with decldl

solveldlband solves AX=B when A is decomposed with decldlband

solvelu solves AX=B when A is decomposed with declu

solvetoeplitz solves AX=B when A is symmetric Toeplitz

matrix functions
determinant returns the determinant of a matrix
diagcat concatenates two matrices long the diagonal
diagonalize set off-diagonal elements to zero
invert invert a matrix
inverteps sets inversion/rank epsilon

62 Chapter 7 Function summary

invertgen (generalized) inversion
invertsym invert a symmetric matrix
logdet returns the log and sign of the determinant
norm returns the norm of a matrix
nullspace returns the null space of a matrix
outer XSX ′, or diagonal(XSX ′) or

∑
xix

′
i

rank returns the rank of a matrix
trace returns the trace of a matrix

matrix modification/selection/reordering
aggregatec aggregates the columns of a matrix by taking sums of groups
aggregater aggregates the rows of a matrix by taking sums of groups
deletec deletes columns with specific values (or missing values)
deleteifc deletes columns according to boolean matrix
deleteifr deletes rows according to boolean matrix
deleter deletes rows with specific values (or missing values)
diagonal extract diagonal from a matrix
dropc deletes specified columns
dropr deletes specified rows
exclusion return sorted unique elements which are not in a 2nd matrix
find row indices of elements of one vector in another
headc returns leading rows of all columns
insertc inserts columns of zeros
insertr inserts rows of zeros
intersection return sorted unique intersection of two matrices
lower return the lower diagonal of a matrix
peakc returns the matrix such that within each column the values do not go down
reflect reflect a matrix
reshape reshape a matrix by row, repeating if necessary
reversec reverse the elements in each column
reverser reverse the elements in each row
selectc selects columns with specific values (or missing values)
selectifc selects columns according to boolean matrix
selectifr selects rows according to boolean matrix
selectr selects rows with specific values (or missing values)
selectrc selects elements from specified rows and columns
setbounds set the lower and upper bounds of a matrix
setdiagonal set the diagonal of a matrix
setlower set the lower diagonal of a matrix
setupper set the upper diagonal of a matrix
shape reshape a matrix by column, padding with zeros if necessary
sortbyc sort one column, and remaining columns accordingly
sortbyr sort one row, and remaining rows accordingly
sortc sort columns of a matrix, or an array of strings
sortcindex sorted index from applying sortc

sortr sort rows of a matrix

63

submat extract a submatrix
tailc returns the trailing rows of all columns
thinc thin the columns of a matrix
thinr thin the rows of a matrix
union return the sorted unique elements of two matrices
unique return the sorted unique elements of a matrix
unvech undoes vech
upper return the upper diagonal of a matrix
vec vectorize the columns of a matrix
vech vectorize the lower diagonal only
vecindex row indices of non-zero elements of the vec of a matrix
vecr vectorize the rows of a matrix
vecrindex row indices of non-zero elements of the vecr of a matrix

maximization, differentiation (Maximization package, requires maximize.oxh)
FindZero finds the root of a scalar function
GetMaxControl get maximum no of iterations and print control
GetMaxControlEps get convergence tolerances
MaxBFGS maximize a function using BFGS
MaxControl set maximum no of iterations and print control
MaxControlEps set convergence tolerances
MaxConvergenceMsg get convergence message
MaxNewton maximize a function using Newton’s method
MaxScalarBrent maximize a function of one argument (derivative free)
MaxScalarPowell maximize a function of one argument (derivative free)
MaxSimplex maximize a function using the simplex method
MaxSQP maximize a function under nonlinear constraints
MaxSQPF as MaxSQP, using feasible iterates
Num1Derivative numerical computation of 1st derivative
Num2Derivative numerical computation of 2nd derivative
NumJacobian numerical computation of Jacobian matrix
SolveNLE solves systems of nonlinear equations
SolveQP solves quadratic programming problem

probability
denschi χ2 density
densf F density
densn standard normal density
denst Student t density
probchi χ2 distribution function (also non-central)
probf F-distribution function
probn standard normal distribution function
probt Student t-distribution function
quanchi χ2 distribution quantiles
quanf F-distribution quantiles
quann standard normal quantiles

64 Chapter 7 Function summary

quant Student t-distribution quantiles
tailchi χ2 distribution tail probabilities
tailf F-distribution tail probabilities
tailn standard normal tail probabilities
tailt Student t-distribution tail probabilities

probability (Probability package, requires oxprob.oxh)
densbeta B(a, b) density
densbinomial Binomial density
denscauchy Cauchy density
densexp Exponential density
densextremevalue Extreme value density
densgamma Gamma density
densgeometric Geometric density
densgh Generalized Hyperbolic density
densgig Generalized Inverse Gaussion density
denshypergeometric Hypergeometric density
densinvgaussian Inverse Gaussian density
denskernel kernel densities
denslogarithmic logarithmic density
denslogistic logistic density
denslogn lognormal density
densmises von Mises density
densnegbin Negative Binomial density
denspareto Pareto density
denspoisson Poisson density
densweibull Weibull density
probbeta B(a, b) cumulative distribution function
probbinomial Binomial cumulative distribution function
probbvn bivariate normal cumulative distribution function
probcauchy Cauchy cumulative distribution function
probexp exponential cumulative distribution function
probextremevalue extreme value cumulative distribution function
probgamma Gamma cumulative distribution function
probgeometric Geometric cumulative distribution function
probhypergeometric Hypergeometric cumulative distribution function
probinvgaussian Inverse Gaussian cumulative distribution function
problogarithmic logarithmic cumulative distribution function
problogistic logistic cumulative distribution function
problogn lognormal cumulative distribution function
probmises von Mises cumulative distribution function
probmvn multivariate normal cdf (up to trivariate)
probnegbin Negative Binomial cumulative distribution function
probpareto Pareto cumulative distribution function
probpoisson cumulative Poisson cumulative distribution function
probweibull Weibull cumulative distribution function

65

quanbeta B(a, b) quantiles
quanbinomial Binomial quantiles
quancauchy Cauchy quantiles
quanexp exponential quantiles
quanextremevalue extreme value quantiles
quangamma Gamma quantiles
quangeometric Geometric quantiles
quanhypergeometric Hypergeometric quantiles
quaninvgaussian Inverse Gaussian quantiles
quanlogarithmic logarithmic quantiles
quanlogistic logistic quantiles
quanlogn lognormal quantiles
quanmises von Mises quantiles
quannegbin Negative Binomial quantiles
quanpareto Pareto quantiles
quanpoisson Poisson quantiles
quanweibull Weibull quantiles

random numbers
ranloopseed used in parallel loops
rann standard normal distributed random numbers
ranseed set and get seed; choose unform random number generator
ranu uniform [0, 1] distributed random numbers

random numbers (Probability package, requires oxprob.oxh)
ranbeta B(a, b) distributed random numbers
ranbinomial binomially distributed random numbers
ranbrownianmotion realizations from a Brownian motion
rancauchy Cauchy random numbers
ranchi χ2 distributed random numbers
randirichlet Dirichlet(α1, . . . , αc+1) random numbers
ranexp exp(λ) distributed random numbers
ranextremevalue extreme value random numbers
ranf F-distributed random numbers
rangamma gamma-distributed random numbers
rangeometric Geometric random numbers
rangh Generalized Hyperbolic random numbers
rangig Generalized Inverse Gaussion random numbers
ranhypergeometric Hypergeometric random numbers
ranindex draw a random index without replacement
raninvgaussian inverse Gaussian-distributed random numbers
ranlogarithmic logarithmic distributed random numbers
ranlogistic logistic distributed random numbers
ranlogn log normal distributed random numbers
ranmises von Mises distributed random numbers
ranmultinomial multinomial distributed random numbers

66 Chapter 7 Function summary

rannegbin negative binomial distributed random numbers
ranpareto Pareto random numbers
ranpoisson poisson distributed random numbers
ranpoissonprocess realizations from a poisson process
ranshuffle samples from a vector without replacement
ranstable stable-distributed random numbers
ransubsample samples from a set of integers without replacement
rant Student t-distributed random numbers
ranuorder uniform order statistics
ranweibull Weibull random numbers
ranwishart Wishart(1, Ir) distributed random drawing

statistics
correlation correlation matrix of matrix (data in columns)
meanc compute column means
meanr compute row means
moments compute column moment ratios (skewness,kurtosis, etc.)
ols2c OLS based on normal equations (data in columns)
ols2r OLS based on normal equations (data in rows)
olsc OLS based on orthogonal decomposition (data in columns)
olsr OLS based on orthogonal decomposition (data in rows)
quantilec quantiles of a matrix (data in columns)
quantiler quantiles of a matrix (data in rows)
spline natural cubic spline smoother (data in columns)
standardize standardize a matrix (data in columns)
varc compute column variances
variance variance matrix of matrix (data in columns)
varr compute row variances

string functions
find finds a string/character in a string or array of strings
replace replace string(s) in a string or array of strings
strfind finds a string/character in an array of strings/string
strfindr finds last occurrance
strifind case insensitive version of strfind
strifindr case insensitive version of strfindr
strlwr convert a string to lower case
strtrim removes leading and trailing white space
strupr convert a string to upper case

system functions
chdir change directory
exit exits Ox
getcwd get current working directory
getenv get the value of an environment variable
oxfilename returns the name of the Ox file it is called from

67

oxprintlevel global control of printing
oxrunerror raises a run-time error
oxversion returns the Ox version
oxwarning controls run-time warnings
systemcall make an operating system call

time series (data in columns)
acf autocorrelation function of matrix
cumprod cumulate autoregressive product
cumsum cumulate autoregressive sum
cumulate cumulate (vector) autoregressive process
diff0 ith difference, (1− Li)y
findsample determines the selected sample
lag0 ith lag
periodogram periodogram, smoothed periodogram (spectral density)

time series (Arma package, requires arma.oxh)
arma0 residuals of an ARMA(p, q) filter
armaforc forecasts from an ARMA(p, q) process
armagen fitted values of an ARMA(p, q) process
armavar autocovariances of an ARMA(p, q) process
diffpow dth fractional difference, (1− L)dy
modelforc forecasts of a dynamic model
pacf partial autocorrelation function of matrix

or applies Choleski factor of a Toeplitz matrix

trigonometric functions
acos arccosine
asin arcsine
atan arctangent
atan2 arctangent of y/x
cos cosine
cosh cosine hyperbolicus
sin sine
sinh sine hyperbolicus
tan tangent
tanh tangent hyperbolicus

standard classes
Database Data loading, saving; model selection
Modelbase Model formulation and estimation, interactive facilities
PcFiml OLS, VAR, cointegration, simultaneous equations
PcFimlDgp General reduced form dynamic model DGP
PcNaiveDgp DGP with up to two lags, may be equilibrium correction
RanMC Error generation for Monte Carlo experiments
Sample Basic sample: year (period)

68 Chapter 7 Function summary

Simulator Monte Carlo experimentation

ox/lib/ code snippets (examples in ox/samples/lib/)
acffft.ox compute the ACF using the FFT
coigamma.ox asymptotic distribution of I(1) and I(2) tests
densest.ox density estimation
hacest.ox heteroscedasticity and autocorrelation consistent covariance
hpfilter.ox compute the Hodrick-Prescott filter
longrun.ox dynamic analysis of dynamic systems
normtest.ox Normality test
quantile.ox compute quantiles given a density and cdf
spline3w.ox computes a cubic spline weight matrix
probimhof.ox Imhof procedure for cdf of the ratio of quadratic form
ranktest.ox tests the rank of a matrix
testres.ox residual-based tests (ARCH, Normality, Portmanteau)

Chapter 8

Function reference

Ox has implicit typing, so function declarations contain no type information. How-
ever, at run time, type information is known and checked for validity. The following
argument types are distinguished in the function summary (the conversion rules are
described in §13.8.2.4):

argument type legal actual argument conversion inside function to
int int, double, 1× 1 matrix int
double int, double, 1× 1 matrix double
matrix int, double, matrix matrix
arithmetic type int, double, matrix int → double
any type any type none
string string none
array array none
address address none

All functions documented in this chapter require the oxstd.oxh header file, which
must be included by writing

#include <oxstd.oxh>

at the top of your source code. A few functions need an additional header file, which is
indicated explicitly.

Some functions have a variable argument list. An example is the fread function.
This function is documented as:
fread(const file, const am, ...);

fread(const file, const am, const type, const r, const c);

which means that the following calls are allowed:
fread(file, am);

fread(file, am, type);

fread(file, am, type, r);

fread(file, am, type, r, c);

The function documentation will indicate what the default values are when arguments
are omitted.

69

70 Chapter 8 Function reference

acf
acf(const ma, const ilag);

ma in: T × n matrix
ilag in: int, the highest lag

Return value
Returns a (ilag +1) × n matrix with the autocorrelation function of the columns
of ma up to lag ilag. Returns 0 if ilag ≤ 0. If any variance is ≤ 10−20, then the
corresponding autocorrelations are set to 0.

Description
Computes the autocorrelation functions of the columns of a T × n matrix A =
(a0, a1, . . . , an−1). The autocorrelation function of a T -vector x = (x0 · · ·xT−1)

′

up to lag k is defined as r = (̂r0 · · · r̂k)′:

r̂j =

∑T−1
t=j (xt − x̄)(xt−j − x̄)∑T−1

t=0 (xt − x̄)2
, (8.1)

with the mean defined in the standard way as:

x̄ = 1
T

T−1∑
t=0

xt.

Note that r̂0 = 1. The approximate standard error for r̂j is 1/
√
T .

See also
DrawCorrelogram, pacf, lib/AcfFft.ox

Example
The example computes a correlogram twice, once using the library function, and
once ‘manually’ (in the matrix macf).
#include <oxstd.oxh>
main()
{

decl i, m1 = rann(200,2), m1m, macf, ilag = 5;

macf = new matrix[ilag + 1][2];
m1m = m1 - meanc(m1); // in deviation from mean

for (i = 0; i <= ilag; ++i)
macf[i][] = diagonal(m1m’lag0(m1m, i));

macf = macf ./ macf[0][]; // scale by variance

print(acf(m1, ilag) ~ macf);
}

produces
1.0000 1.0000 1.0000 1.0000

-0.0021973 -0.046870 -0.0021973 -0.046870
-0.041011 -0.051470 -0.041011 -0.051470
-0.050879 -0.039346 -0.050879 -0.039346
0.056525 -0.093980 0.056525 -0.093980
0.021034 0.12671 0.021034 0.12671

acos 71

acos
acos(const ma);

ma in: arithmetic type
Return value

Returns the arccosine of ma, of double or matrix type.
See also

asin, atan, cos, cosh, sin, sinh, tan, tanh
Example

#include <oxstd.oxh>
main()
{

print(acos(<0,1>));
print(asin(<0,1>));
print(atan(<0,1>));
print(cos(<0,1>));
print(cosh(<0,1>));
print(sin(<0,1>));
print(sinh(<0,1>));
print(tan(<0,1>));
print(tanh(<0,1>));

}

produces
1.5708 0.00000
0.00000 1.5708
0.00000 0.78540
1.0000 0.54030
1.0000 1.5431
0.00000 0.84147
0.00000 1.1752
0.00000 1.5574
0.00000 0.76159

72 Chapter 8 Function reference

aggregatec, aggregater
aggregatec(const ma, const istep);

aggregater(const ma, const istep);

ma in: m× n matrix A
istep in: int, size of groups, s

Return value
The aggregatec function returns a ceil(m/s) × n matrix where each group of s
observations in every column is replaced by the sum.
The aggregater function returns a m × ceil(n/s) matrix where each group of s
observations in every row is replaced by the sum.

See also
thinc, thinr

Example
#include <oxstd.oxh>
main()
{

decl x = ones(20,1) ~ range(1,20)’;

println(aggregatec(x, 5));
println(aggregatec(x, 6));
println(aggregater(x’, 5));
println(aggregater(x’, 6));

}

produces
5.0000 15.000
5.0000 40.000
5.0000 65.000
5.0000 90.000

6.0000 21.000
6.0000 57.000
6.0000 93.000
2.0000 39.000

5.0000 5.0000 5.0000 5.0000
15.000 40.000 65.000 90.000

6.0000 6.0000 6.0000 2.0000
21.000 57.000 93.000 39.000

any 73

any
any(const ma);

ma in: arithmetic type
Return value

Returns TRUE if any element of ma is TRUE, of integer type.
Description

If any element is non-zero, the return value is 1. This is in contrast with the if

statement, which evaluates to TRUE if all elements are TRUE.
See also

§13.8.9
Example

#include <oxstd.oxh>
main()
{

decl m1 = unit(2), m2 = zeros(2,2);

if (m1 == 0) print ("TRUE ");
else print ("FALSE ");
if (any(m1 .== 0)) print ("TRUE ");
else print ("FALSE ");
if (!(m1 == 0)) print ("TRUE ");
else print ("FALSE ");
if (any(m1 .!= 0)) print ("TRUE ");
else print ("FALSE ");

if (m2 == 0) print ("TRUE ");
else print ("FALSE ");
if (any(m2 .== 0)) print ("TRUE ");
else print ("FALSE ");
if (m2 != 0) print ("TRUE ");
else print ("FALSE ");
if (any(m2 .!= 0)) print ("TRUE ");
else print ("FALSE ");

}

produces: FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

74 Chapter 8 Function reference

arglist
arglist();

Return value
Returns an array of strings holding the command line arguments passed to the Ox
program. The first entry is the name of the program.

Example
Running the following arglist.ox program:
#include <oxstd.oxh>
main()
{

decl args = arglist(), s, i, j;

for (i = 0; i < sizeof(args); ++i)
{

sscan(args[i], "%d", &j);
println("argument ", i, ": ", args[i], " integer value:", j);

}
}

as oxl arglist.ox aa 12 (the arguments before arglist.ox are passed to oxl,
those after to arglist.ox), produces:

argument 0: arglist.ox integer value:0
argument 1: aa integer value:0
argument 2: 12 integer value:12

See also
va arglist (for variable number of function arguments)

array
array(const ma);

ma in: any type
Return value

Casts the argument to an array, unless it already is an array.
Example

The array cast can be useful when an array indexation must remain an array. For
example, a single index on an array of strings returns a string, whereas a multiple
index returns an array of strings:
#include <oxstd.oxh>
main()
{

decl as = {"ax", "bx", "cx"};

print("single index is string: ", as[0],
"\nmultiple index is array of strings:", as[0:1],
"keep single index as array:", array(as[0]));

}

which produces:
single index is string: ax
multiple index is array of strings:
[0] = ax
[1] = bx
keep single index as array:
[0] = ax

asin 75

asin
asin(const ma);

ma in: arithmetic type
Return value

Returns the arcsine of ma, of double or matrix type.
See also

acos (for examples), atan, cos, cosh, sin, sinh, tan, tanh

atan, atan2
atan(const ma);

atan2(const my, const mx);

ma in: arithmetic type
my in: arithmetic type
mx in: arithmetic type

Return value
The atan function returns the arctangent of ma, of double or matrix type, between
−π/2 and π/2.
The atan2 function returns the arctangent of my ./ mx, between −π and π. The
return type is double if both my and mx are int or double. If my or mx is a matrix, the
return type is a matrix of the same size.

See also
acos (for examples), asin, cos, cosh, sin, sinh, tan, tanh

76 Chapter 8 Function reference

bessel
bessel(const mx, const type, const n01);

bessel(const mx, const type, const nu);

mx in: x, arithmetic type, points at which to evaluate
type in: character, type of Bessel function: ’J’, ’Y’, ’I’, ’K’

or string: "IE", "KE", for scaled Bessel functions
n01 in: 0 or 1: order of Bessel function
nu in: double, fractional order of Bessel function

Return value
Returns a m × n matrix with the requested Bessel function, or a double when x is
scalar. The following are available: J0(x), Y0(x), J1(x), Y1(x), and the modified
Bessel functions I0(x), K0(x), I1(x), K1(x). Similarly, the fractional Bessel func-
tions Jν(x), Yν(x), Iν(x), Kν(x). The modified Bessel functions are also available
in scaled form: e−xIν(x) and exKν(x).
The result is accurate to about 15 digits.

Description
The implementation is based on the code by W. Fullerton (Los Alamos scientific
lab), as available in the FN library of netlib. The fractional Bessel functions are
based on the Fortran code in Netlib by W.J. Cody.

betafunc 77

betafunc
betafunc(const mx, const ma, const mb);

mx in: x, arithmetic type
ma in: a, arithmetic type
mb in: b, arithmetic type

Return value
Returns the incomplete beta integral Bx(a, b). Returns 0 if a ≤ 0, b ≤ 0 or x ≤ 0.
The accuracy is to about 10 digits.
The return type is derived as follows:

returns mx ma,mb
m× n matrix m× n matrix scalar
m× n matrix scalar m× n matrix
m× n matrix m× n matrix m× n matrix
double scalar scalar

Description
The incomplete beta integral is defined as:

Bx(a, b) =

∫ x

0

ta−1 (1− t)
b−1

dt, a > 0, b > 0.

Note that the complete beta integral is:

B(a, b) = B1(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

Using the loggamma function, B(a, b) can be computed as:
exp(loggamma(a) + loggamma(b) - loggamma(a+b))

which avoids overflow in the gamma function.
Also note that betafunc computes the incomplete beta integral, and not Ix(a, b) =
Bx(a, b)/B(a, b). Ix(a, b) corresponds to the beta distribution, and can be com-
puted with probbeta.
The approximation is based on the continued fraction representation given in Press,
Flannery, Teukolsky, and Vetterling (1988, §6.3).

See also
gammafunc, probbeta, probf, tailf

78 Chapter 8 Function reference

binand, bincomp, binor, binpop, binxor

binand(const ia, const ib, ...);

bincomp(const ia);

binor(const ia, const ib, ...);

binpop(const ia, ...);

binxor(const ia, const ib, ...);

binvec(const ia);

ia in: int or matrix of integers
ib in: int or matrix of integers
... in: optional additional arguments, if present, all arguments must

be integers
Return value

binand returns the result from and-ing all arguments (the & operator in C/C++).
bincomp returns the binary (bit-wise) complement of the argument (the ~ operator
in C/C++).
binor returns the result from or-ing all arguments (the | operator in C/C++).
binpop returns the number of non-zero bits (popcount, Hamming weight) in the
argument. If there is more than one argument, these are xored together first (the
Hamming distance).
binvec returns the n × 32 vector of zeros and ones, with each row the bitwise
representation of the integer(s) in the argument. The least significant bit comes
first, so 6 is returned as 0,1,1 followed by 29 zeros.
binoxr returns the result from xor-ing all arguments (the ^ operator in C/C++).

Example
#include <oxstd.oxh>
main()
{

print(binand(1,2,4), " ", binor(1,2,4));
}

produces: 0 7

binomial

binomial(const n, const k);

n in: arithmetic type
k in: arithmetic type

Return value
Returns the binomial function at the rounded value of each element, of double or
matrix type.
For negative integers, the function returns .NaN.

Description
Computes the binomial coefficient:(

n
k

)
=

n!

(n− k)!k!
.

binomial 79

When max(n− k, k) ≥ 50 the computation uses the loggamma function:(
n
k

)
= exp (log Γ(n+ 1)− log Γ(n− k + 1)− log Γ(k + 1)) .

which has about 13 significant digits.
See also

factorial, gammafunc, loggamma

80 Chapter 8 Function reference

cabs, cdiv, cerf, cexp, clog, cmul, csqrt
cabs(const ma);

cdiv(const ma, const mb);

cerf(const ma);

cexp(const ma);

clog(const ma);

cmul(const ma, const mb);

csqrt(const ma);

ma, mb in: 2 × n matrix (first row is real part, second row imaginary
part), or 1× n matrix (real part only)

Return value
cabs returns a 1× n matrix with absolute value of the vector of complex numbers.
cdiv returns a 2×n matrix with the result of the division of the vectors of complex
numbers. If both ma and mb have no imaginary part, the return value is 1× n.
cerf returns a 2 × n matrix with the result of the complex error function of the
vector of (complex) numbers.
cexp returns a 2×n matrix with the result of the complex exponential of the vector
of (complex) numbers.
clog returns a 2 × n matrix with the result of the complex logarithm of the vector
of (complex) numbers. This is the principal branch.
cmul returns a 2× n matrix with the result of the multiplication of the two vectors
of complex numbers. If both ma and mb have no imaginary part, the return value
will be 1× n.
csqrt returns a 2×nmatrix with the square root of the vector of complex numbers.

Description
Using subscript r for the real part of a, b and subscript i for the imaginary part:
cabs: modulus of complex number: |a| = (a2r + a2i)

1/2.
cmul: complex multiplication: ab = (ar + iai)(br + ibi).
cdiv: complex division: a/b = (ar + iai)/(br + ibi).
csqrt: square root of complex number: a1/2 = (ar + iai)

1/2.
cexp: complex exponential: exp(a) = exp(ar)(cos(ai) + i sin(ai)).
clog: complex logarithm: log(a) = log(|a|) + i arctan(ai/ar).
complex conjugate: (ar − iai).

The complex logarithm is a multivalued function, and the clog function takes the
principal branch, see Olver, Lozier, Boisvert, and Clark (2010, § 4.2):

log(z) = log |z|+ iphz, π < phz, π,

extended by the cut

log(x+ i0) = log |x|+ iπ and log(x− i0) = log |x| − iπ both for −∞ < x < 0.

This cut along the negative real axis (x± i0 for x < 0) causes some properties not
to hold when the line is crossed, e.g.:

z1 = −2 + 1i, z2 = −1 + 2i, then z1z2 = 0− 5i,

cabs 81

and

log(z1) + log(z2) = log(5) + iπ3/2, but log(z1z2) = log(5) + iπ1/2.

The identity log(z1z2) = log(z1) + log(z2) holds when |phz1 + phz2| ≤ π, or if
we were to use the multivalued version of the complex logarithm.
The complex exponential is single valued with period 2πi: exp(z+2πi) = exp(z).
So in the above example we will find that:exp[log(z1z2)] is equal to exp[log(z1) +
log(z2)].

Example
#include <oxstd.oxh>
main()
{

decl v = <1, -1, -2>, rv = csqrt(v);
rv[0][1] = 1;/* change to a more interesting value */

print(v, rv, cabs(rv), cdiv(rv, rv), cmul(rv, rv),
cmul(rv, cdiv(ones(1,3), rv)));

print(cexp(clog(rv)));
}

produces
1.0000 -1.0000 -2.0000

1.0000 1.0000 0.00000
0.00000 1.0000 1.4142

1.0000 1.4142 1.4142

1.0000 1.0000 1.0000
0.00000 0.00000 0.00000

1.0000 0.00000 -2.0000
0.00000 2.0000 0.00000

1.0000 1.0000 1.0000
0.00000 0.00000 0.00000

1.0000 1.0000 8.6593e-017
0.00000 1.0000 1.4142

In the second example the complex functions are used to check if the computed
roots of a polynomial indeed correspond to zeros of the polynomial:
#include <oxstd.oxh>
main()
{

decl v1 = <-1, 1.2274, -0.017197, -0.28369, -0.01028>, roots, cr;

polyroots(v1, &roots);

cr = columns(roots);
print("roots", roots,

"inverse roots", cdiv(ones(1,cr), roots));

decl x1, x2, x3, x4, check;
x1 = roots;

82 Chapter 8 Function reference

x2 = cmul(x1, x1); /* roots ^ 2 */
x3 = cmul(x2, x1); /* roots ^ 3 */
x4 = cmul(x2, x2); /* roots ^ 4 */
check = v1[0][4] * (ones(1,cr) | zeros(1,cr)) +

v1[0][3] * x1 + v1[0][2] * x2 +
v1[0][1] * x3 + v1[0][0] * x4;

print("check (near-zeros could be different "
"with other Ox versions):", check);

}

which produces:
roots

0.82865 0.82865 -0.39337 -0.036535
0.16923 -0.16923 0.00000 0.00000

inverse roots
1.1585 1.1585 -2.5422 -27.371

-0.23659 0.23659 0.00000 0.00000
check (near-zeros could be different with other Ox versions):

0.00000 0.00000 -1.7000e-016 -8.4441e-018
-2.2204e-016 2.2204e-016 0.00000 0.00000

The final example considers the complex logarithm:
#include <oxstd.oxh>
main()
{

decl z, z1, z2, zm;
z = -1|-0.0; println("%c", {"z","clog(z)"}, z ~ clog(z));
z = -1|0; println(z ~ clog(z));
z = 1|-0.0; println(z ~ clog(z));
z = 1|0; println(z ~ clog(z));

z1=-2|1; z2 = -1|2;
zm = cmul(z1, z2);
println("%c", {"clog(z_1z_2)","clog(z_1)+clog(z_2)"},

clog(zm) ~ clog(z1)+clog(z2));
println("ph(z_1)=", atan2(z1[1], z1[0]),

" ph(z_2)=", atan2(z2[1], z2[0]));
}

which produces:
z clog(z)

-1.0000 0.00000
-0.00000 -3.1416

-1.0000 0.00000
0.00000 3.1416

1.0000 0.00000
-0.00000 -0.00000

1.0000 0.00000
0.00000 0.00000

clog(z_1z_2)clog(z_1)+clog(z_2)
1.6094 1.6094

-1.5708 4.7124
ph(z_1)=2.67795 ph(z_2)=2.03444

ceil 83

ceil
ceil(const ma);

ma in: arithmetic type
Return value

Returns the ceiling of each element of ma, of double or matrix type. The ceiling is
the smallest integer larger than or equal to the argument

See also
floor, round, trunc

Example
#include <oxstd.oxh>
main()
{

print(ceil(<-1.8, -1.2, 1.2, 1.8>));
print(floor(<-1.8, -1.2, 1.2, 1.8>));
print(round(<-1.8, -1.2, 1.2, 1.8>));
print(trunc(<-1.8, -1.2, 1.2, 1.8>));

print(int(-1.8), " ", int(-1.2), " ",
int(1.2), " ", int(1.8));

}

produces
-1.0000 -1.0000 2.0000 2.0000
-2.0000 -2.0000 1.0000 1.0000
-2.0000 -1.0000 1.0000 2.0000
-1.0000 -1.0000 1.0000 1.0000

-1 -1 1 1

chdir
chdir(const s);

s in: new directory
Return value

Returns 1 if successful, 0 otherwise.
Description

Changes the current directory.
Windows specific: if the string starts with a drive letter followed by a semicolon, the
current drive is also changed. For example, use chdir("c:") to change to the C
drive.

See also
getcwd, getfiles (for example), systemcall

84 Chapter 8 Function reference

choleski
choleski(const ma);

ma in: symmetric, positive definite m×m matrix A
Return value

Returns the Choleski decomposition P of a symmetric positive definite matrix A:
A = PP ′; P is lower triangular (has zeros above the diagonal).
Returns 0 if the decomposition failed.

Error and warning messages
choleski(): decomposition failed (this implies a negative definite or numerically
singular matrix A).

See also
decldl, invertsym, solvelu, RanMC::Choleski

Example
The example also shows how solvelu may be used to obtain P−1.
#include <oxstd.oxh>
main()
{

decl mp;

mp = choleski(<4,1;1,3>);
print(mp, mp*mp’);

print(1/mp ~ solvelu(mp, 0, 0, unit(2)));
}

produces
2.0000 0.00000

0.500000 1.6583

4.0000 1.0000
1.0000 3.0000

0.50000 0.00000 0.50000 0.00000
-0.15076 0.60302 -0.15076 0.60302

classname 85

classname
classname(const obj);

obj in: object of a class
Return value

Returns a string with the class name of the object (or 0 if the argument is not an
object).

See also
isclass

clone
clone(const obj);

clone(const obj, const iDeep=1);

obj in: object of a class
iDeep in: int, 1 (deep copy, the default), 0: shallow copy

Return value
Returns a clone of the object.

Description
The clone is an exact copy that must be removed with a call to delete.
When writing a = new Database(); b = a; both a and b refer to the same ob-
ject, and only one can be deleted.
Writing a = new Database(); b = clone(a); both a and b refer different ob-
jects, which happen to hold the same values. Both a and b should be deleted when
done.
The default is to make a deep copy: all members that are objects are also cloned
(and members of members, etc.). A shallow copy only clones the members that are
objects, but not members of members.

86 Chapter 8 Function reference

columns
columns(const ma);

ma in: any type
Return value

Returns an integer value with the number of columns in the argument ma:

type returns
m× n matrix n
string number of characters in the string
array number of elements in the array
file number of columns in the file

(only if opened with f format, see fopen)
other 0

See also
rows, sizec, sizeof, sizer, sizerc

Example
#include <oxstd.oxh>
main()
{

println(columns(<0,1;1,2;3,4>), " ", columns("taylor"));
println(rows(<0,1;1,2;3,4>), " ", rows("taylor"));
println(sizerc(<0,1;1,2;3,4>), " ", sizeof("taylor"));

}

produces
2 6
3 6
6 6

constant
constant(const dval, const r, const c);

constant(const dval, const ma);
dval in: double
r in: int
c in: int
ma in: matrix

Return value
constant(dval,r,c) returns an r by c matrix filled with dval.
constant(dval,ma) returns a matrix of the same dimension as ma, filled with
dval.

See also
ones, unit, zeros

Example
#include <oxstd.oxh>
main()
{

print(constant(1.5, 2, 2));
}

produces
1.5000 1.5000
1.5000 1.5000

correlation 87

correlation
correlation(const ma);

ma in: T × n matrix A
Return value

Returns a n × n matrix holding the correlation matrix of ma. If any variance is
≤ 10−20, then the corresponding row and column of the correlation matrix are set
to 0.

Description
Computes the correlation matrix R = (rij) of a T × n matrix A = (atj):

āj =
1
T

∑T−1
t=0 atj

σ̂2
j = 1

T

∑T−1
t=0 (atj − āj)

2

rij =
1

T σ̂iσ̂j

∑T−1
t=0 (ati − āi)(atj − āj)

Note that rii = 1.
See also

acf, meanc, meanr, standardize, varc, varr, variance
Example

#include <oxstd.oxh>
main()
{

decl m1 = rann(100,2), m2;

m2 = standardize(m1);
print(correlation(m1), m2’m2/rows(m2));

}

produces
1.0000 -0.039218

-0.039218 1.0000

1.0000 -0.039218
-0.039218 1.0000

cos, cosh
cos(const ma);

cosh(const ma);

ma in: arithmetic type
Return value

cos returns the cosine of ma, of double or matrix type.
cosh returns the cosine hyperbolicus of ma, of double or matrix type.

See also
acos (for examples), asin, atan, cosh, sin, sinh, tan, tanh

88 Chapter 8 Function reference

countc
countc(const ma, const va);

ma in: m× n matrix
va in: 1× q or q × 1 matrix

Return value
Returns a matrix r which counts of the number of elements in each column of ma
which is between the corresponding values in va:

r[0][0] = # elements in column 0 of ma ≤ va[0]

r[1][0] = # elements in column 0 of ma > va[0] and ≤ va[1]

r[2][0] = # elements in column 0 of ma > va[1] and ≤ va[2]

r[q][0] = # elements in column 0 of ma > va[q-1]

. . .
r[0][1] = # elements in column 1 of ma ≤ va[0]

r[1][1] = # elements in column 1 of ma > va[0] and ≤ va[1]

r[2][1] = # elements in column 1 of ma > va[1] and ≤ va[2]

r[q][1] = # elements in column 1 of ma > va[q-1]

. . .

If ma is m × n, and va is 1 × q (or q × 1) the returned matrix is (q + 1) × n (any
remaining columns of va are ignored). If the values in va are not ordered, the return
value is filled with missing values.

Description
Counts the number of elements in each column which is in a supplied interval.

See also
countr

Example
#include <oxstd.oxh>
main()
{

print(countc(<0:3;1:4;2:5>, <2,4>));
print(countr(<0:3;1:4;2:5>, <2>));

}

produces
3.0000 2.0000 1.0000 0.00000

0.00000 1.0000 2.0000 2.0000
0.00000 0.00000 0.00000 1.0000

3.0000 1.0000
2.0000 2.0000
1.0000 3.0000

countr 89

countr
countr(const ma, const va);

ma in: m× n matrix
va in: 1× q or q × 1 matrix

Return value
Returns a matrix r which counts of the number of elements in each row of ma which
is between the corresponding values in va:

r[0][0] = # elements in row 0 of ma ≤ va[0]

r[0][1] = # elements in row 0 of ma > va[0] and ≤ va[1]

r[0][2] = # elements in row 0 of ma > va[1] and ≤ va[2]

r[0][q] = # elements in row 0 of ma > va[q-1]

. . .
r[1][0] = # elements in row 1 of ma ≤ va[0]

r[1][1] = # elements in row 1 of ma > va[0] and ≤ va[1]

r[1][2] = # elements in row 1 of ma > va[1] and ≤ va[2]

r[1][q] = # elements in row 1 of ma > va[q-1]

. . .

If ma is m × n, and va is 1 × q (or q × 1) the returned matrix is m × (q + 1) (any
remaining columns of va are ignored). If the values in va are not ordered, the return
value is filled with missing values.

Description
Counts the number of elements in each row which is in a supplied interval.

See also
countc (for an example)

90 Chapter 8 Function reference

cumprod
cumprod(const mfac);

cumprod(const mfac, const cp);

cumprod(const mfac, const cp, const mz);

mfac in: T × n or 1× n matrix of multiplication factors S
cp in: int: autoregressive order p (optional argument; default is 1)
mz in: (optional argument) T ×n or 1×n matrix of known compo-

nents Z (optional argument; default is 0)
Return value

Returns a T ×n matrix with the cumulated autoregressive product. The first p rows
of the return value will be identical to the sum of those in mz and mfac; the recursion
will be applied from the pth term onward. If either mz or mfac is 1 × n, the same
values are used for every t.

Description
For a column (z0, . . . , zT−1)

′ of known values X , and multiplication factors
(s0, . . . sT−1)

′ the cumprod function computes:

at = zt + st, t = 0, . . . , p− 1,
at = zt + st(at−1 × . . .× at−p) t = p, . . . , T − 1.

See also
cumsum (for an example), cumulate

cumsum
cumsum(const mx, const vp);

cumsum(const mx, const vp, const mstart);

mx in: T × n matrix of known component X
vp in: 1×p or n×p or T×pmatrix with autoregressive coefficients

ϕ1, ϕ2, . . . , ϕp
mstart in: (optional argument) s×n matrix of starting values S, s ≥ p;

default is mx
Return value

Returns a T × n matrix with the cumulated autoregressive sum. The first p rows of
the return value will be identical to those of mstart; the recursion will be applied
from the pth term onward.
If vp is 1× p, the same coefficients are applied to each column.
If vp is n×p, each row will have coefficients specific to each column of the recursive
series.
Finally, if vp is T × p, the same coefficients are applied to each column, but the
coefficients are specific to each row (time-varying coefficients).

Description
For a column (x0, . . . , xT−1)

′ of known values X , and starting values
(s0, . . . sp−1)

′ the cumsum function computes:

at = st, t = 0, . . . , p− 1,
at = xt + ϕ1at−1 + . . .+ ϕpat−p, t = p, . . . , T − 1.

cumsum 91

When ϕ is n × p, the AR coefficients are different for each data column, for j =
0, . . . , n− 1:

at,j = st,j , t = 0, . . . , p− 1,
at,j = xt,j + ϕj,1at−1 + . . .+ ϕt,paj−p, t = p, . . . , T − 1.

When ϕ is T × p (and T ̸= n), the AR coefficients are time-varying:

at = st, t = 0, . . . , p− 1,
at = xt + ϕt,1at−1 + . . .+ ϕt,pat−p, t = p, . . . , T − 1.

See also
cumprod, cumulate

Example
#include <oxstd.oxh>
main()
{

decl mx = ones(5,1);
print(mx ~ cumsum(mx, <0.5>)

~ cumsum(mx, <1, 0.5>, <1;2>)
~ cumprod(mx * 2)
~ cumprod(mx * 2, 2));

print(cumsum(mx, <0.5;0.5;0.5;1;1>)’);
}

produces
1.0000 1.0000 1.0000 2.0000 2.0000
1.0000 1.5000 2.0000 4.0000 2.0000
1.0000 1.7500 3.5000 8.0000 8.0000
1.0000 1.8750 5.5000 16.000 32.000
1.0000 1.9375 8.2500 32.000 512.00

1.0000 1.5000 1.7500 2.7500 3.7500

92 Chapter 8 Function reference

cumulate
cumulate(const ma);

cumulate(const ma, const m1, ...);

cumulate(const ma, const am);
ma in: T × n matrix A
m1 in: n× n matrix, coefficients of first lags (optional argument)
. . . in: n× n matrix, coefficients of lags 2, . . .
am in: array of length k with n× n matrices of coefficients

Return value
Returns a T × n matrix. The simplest version returns a matrix which holds the
cumulated (integrated) columns of ma.
The second form cumulates (integrates) the (vector) autoregressive process with
current values ma using the specified coefficient matrices. The function has a vari-
able number of arguments, and the number of arguments determines the autore-
gressive order (minimum 2 arguments, which is an AR(1) process). Note that
cumulate(m) corresponds to cumulate(m,unit(columns(m))).

Description
The version with one arguments cumulates the columns of its argument.
For the form with additional arguments, assume that ma and k coefficient matrices
have been supplied (k ≥ 1: at least two arguments) and write AT−1

0 = A = ma,
M1 = m1, . . .Mk. Also define AT−1−i

−i as the ith lag, whereby each column is
lagged: each column of A is shifted down, and missing values are replaced by
zeros, so that e.g. AT−2

−1 = lag0(ma, 1). The cumulate function returns:

AT−1
0 +AT−2

−1 M1 +AT−3
−2 M2 + · · ·AT−1−k

−k Mk,

which has the same dimensions as ma.
The univariate case is easier to explain. For example, with three arguments,
(a0, . . . , aT−1)

′, β0 and β1, this function computes yt:

y0 = a0,
y1 = a1 + β0y0,
yt = at + β0yt−1 + β1yt−2, t = 2, . . . , T − 1.

See also
cumsum, lag0

Example
#include <oxstd.oxh>
main()
{

print(ones(5,1) ~ cumulate(ones(5,1))
~ cumulate(ones(5,1), <0.5>)
~ cumulate(ones(5,1), <1>, <0.5>)
~ cumulate(ones(5,1), {<1>, <0.5>}));

}

produces
1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 2.0000 1.5000 2.0000 2.0000
1.0000 3.0000 1.7500 3.5000 3.5000
1.0000 4.0000 1.8750 5.5000 5.5000
1.0000 5.0000 1.9375 8.2500 8.2500

date 93

date
date();

Return value
A string holding the current date.

See also
time

Example
#include <oxstd.oxh>
main()
{

println("\ntime=", time(), " date=", date());
}

prints the current time and date.

dawson
dawson(const ma);

ma in: arithmetic type
Return value

Returns the Dawson integral

F (x) = e−x2

∫ x

0

et
2

dt

of each element of ma, of double or matrix type.
Description

The function is based on the Fortran code in Netlib by W.J. Cody.
See also

erf

94 Chapter 8 Function reference

dayofcalendar, dayofeaster, dayofmonth, dayofweek

dayofcalendar();

dayofcalendar(const index);

dayofcalendar(const year, const month, const day);

dayofeaster(const year);

dayofmonth(const year, const month, const dayofweek, const nth);

dayofweek(const index);

dayofweek(const year, const month, const day);

index in: in: arithmetic type, calendar index of a certain date, as re-
turned by dayofcalendar(year, month, day)

year in: arithmetic type
month in: arithmetic type, January=1, etc.
day in: arithmetic type
dayofweek in: arithmetic type, day of the week (Sunday = 1, Monday = 2,

. . .)
nth in: arithmetic type, > 0: n-th from start of month, < 0: n-th

from end of month
Return value

The dayofcalendar function without any arguments returns the calendar index
(Julian day number) of today.
The dayofcalendar function with three arguments returns the calendar index of
the specified date (this is the Julian day number, see below). If all arguments are an
integer, the return value will be an integer.
The dayofcalendar function with one argument takes a calendar index (or vector
of indices), as returned by dayofcalendar(year, month, day) as argument,
returning a n × 3 matrix with the triplet year, month, day in each row (n is the
number of elements in the input).
The dayofeaster function returns the calendar index of Easter.
The dayofmonth function returns the calendar index of the n-th day of the
week in the specified month (n-th from last for a negative value). For exam-
ple dayofmonth(2005, 5, 2, -1) returns the index of the last Monday in May
2005.
The dayofweek function with three arguments returns the day of the week (Sunday
= 1, Monday = 2, . . .). If all arguments are an integer, the return value will be an
integer.
The dayofweek function with one argument takes a calendar index (r vector of) as
argument, returning the day of the week (Sunday = 1, Monday = 2, . . .).

Description
The calendar1 index is the Julian day number, and the dayof... functions convert
from or to the index. For example, Julian day 2453402 corresponds to 2005-01-31.
An optional fractional part specifies the fraction of the day: 2453402.75 corresponds
to 2005-01-01T18:00. If the day number is zero, it is interpreted as a time only, so

1The calendar is Gregorian from 15 October 1582 onwards, and Julian before (so there is no
year 0: year −1 precedes year 1; day 0 is on Julian date 1 January -4713).

dayofcalendar 95

0.75 is just 18:00 (6 PM).2

Use dayofcalendar(year, month, day) - dayofcalendar(year, 1, 1)

+ 1 to compute the day in the year. Similarly, the function can be used to compute
the number of days between two dates.
The "%C" print format is available to print a calendar index.

See also
print, timeofday, timing

Example
#include <oxstd.oxh>
main()
{

println("1-Jan-2000 was weekday ",
dayofweek(2000, 1, 1), " (7 is Saturday)");

println("1-Jan-2000 was yearday ",
dayofcalendar(2000, 1, 1));

println("2000 had ", dayofcalendar(2001, 1, 1)
- dayofcalendar(2000, 1, 1), " days");

println("2001 had ", dayofcalendar(2002, 1, 1)
- dayofcalendar(2001, 1, 1), " days");

println("%c", {"Easter Sunday", "Last Wed in May"},
"%17C", dayofeaster(range(2005, 2010)’)

~ dayofmonth(range(2005, 2010)’, 5, 2, -1));

println("today ", "%C", dayofcalendar());
}

produces
1-Jan-2000 was weekday 7 (7 is Saturday)
1-Jan-2000 was yearday 2451545
2000 had 366 days
2001 had 365 days

Easter Sunday Last Wed in May
2005-03-27 2005-05-30
2006-04-16 2006-05-29
2007-04-08 2007-05-28
2008-03-23 2008-05-26
2009-04-12 2009-05-25
2010-04-04 2010-05-31

today 2012-11-28

2This is similar to how Excel stores date and time. The main difference is that Excel uses
1=1900-01-01 (wrongly treating 1900 as a leap year).

96 Chapter 8 Function reference

decldl
decldl(const ma, const aml, const amd);

ma in: symmetric, positive definite m×m matrix A
aml in: address of variable

out: m×m lower diagonal matrix L, LDL′ = A
amd in: address of variable

out: 1×m matrix with reciprocals of D
Return value

Returns the result of the Choleski decomposition:
1 no error;
0 the Choleski decomposition failed: the matrix is negative definite or the matrix

is (numerically) singular.
Description

Computes the square root free Choleski decomposition of a symmetric positive def-
inite matrix A stored in argument ma: A = LDL′. L has zeros above the diagonal
and ones on the diagonal.
Note that the reciprocals of D are stored in amd.

Error and warning messages
decldl(): decomposition failed (the matrix is numerically singular or negative defi-
nite)

See also
choleski, decldlband, solveldl

Example
#include <oxstd.oxh>
main()
{

decl ma = <4,1;1,3>, md, ml, mi;

print("result = ", decldl(ma, &ml, &md));
print(" L =", ml, "D =", md);
print(ml*diag(1 ./ md)*ml’);

mi = solveldl(ml, md, unit(2));
print(mi*ma);

}

Note that diag(1 ./ md) and diag(1./md) are not the same. The program pro-
duces (the final matrix could have values of around 1e-16 instead of 0):
result = 1 L =

1.0000 0.00000
0.25000 1.0000

D =
0.25000 0.36364

4.0000 1.0000
1.0000 3.0000

1.0000 0.00000
0.00000 1.0000

decldlband 97

decldlband
decldlband(const ma, const aml, const amd);

ma in: p×m vector specifying the Ab matrix
aml in: address of variable

out: holds p×m lower diagonal matrix L
amd in: address of variable

out: 1×m matrix with reciprocals of D
Return value

Returns the result of the Choleski decomposition:
1 no error;
0 the Choleski decomposition failed: the matrix is negative definite or the matrix

is (numerically) singular.
Description

Computes the square root free Choleski decomposition of a symmetric positive def-
inite band matrix A stored in argument ma: A = LDL′. L has zeros above the
diagonal and ones on the diagonal. Note that the reciprocals of D are stored.
IfA = (aij), i, j = 0, . . .m−1 is the underlyingm×m symmetric positive definite
band matrix, with bandwidth p, so that aij = 0 for |i− j| > p, then the input matrix
ma = Ab is formed as:

0 · · · · · · 0 a0,p−1 · · · am−p,m−1

...
...

0 a0,1 a1,2 · · · · · · · · · am−2,m−1

a0,0 · · · · · · · · · · · · · · · am−1,m−1


The example below also shows how to create Ab out of A and vice versa.

Error and warning messages
decldlband(): decomposition failed (the matrix is numerically singular or negative
definite)

See also
diagonal, solveldlband, solvetoeplitz

Example
#include <oxstd.oxh>
main()
{

decl i, j, k, m, mab, ma, ml, md, ct = 5, cb = 2;

ma = toeplitz(<5,4,3>, ct); // create test matrix ma
for (i = 0; i < ct; ++i)

ma[i][i] += i;

mab = diagonal(ma, cb); // create band matrix version
print("original matrix", ma, "band version", mab);

if (decldlband(mab, &ml, &md)) // decompose and solve
print("solved:", solveldlband(ml, md, <1;2;3;4;5>)’);

// undo banded storage:store L in lower diagonal of ma

98 Chapter 8 Function reference

for (i = 0, m = -cb; i < ct; ++i, m++)
for (j = max(0,m), k = j - m; j < i; ++j, ++k)

ma[i][j] = ml[k][i];

print("band L=", ml, "L:U=", ma);
}

produces
original matrix

5.0000 4.0000 3.0000 0.00000 0.00000
4.0000 6.0000 4.0000 3.0000 0.00000
3.0000 4.0000 7.0000 4.0000 3.0000

0.00000 3.0000 4.0000 8.0000 4.0000
0.00000 0.00000 3.0000 4.0000 9.0000

band version
0.00000 0.00000 3.0000 3.0000 3.0000
0.00000 4.0000 4.0000 4.0000 4.0000
5.0000 6.0000 7.0000 8.0000 9.0000

solved:
0.012378 0.26172 -0.036251 0.17507 0.48983

band L=
0.00000 0.00000 0.60000 1.0714 0.70000
0.00000 0.80000 0.57143 0.53333 0.67290
1.0000 1.0000 1.0000 1.0000 1.0000

L:U=
5.0000 4.0000 3.0000 0.00000 0.00000

0.80000 6.0000 4.0000 3.0000 0.00000
0.60000 0.57143 7.0000 4.0000 3.0000
0.00000 1.0714 0.53333 8.0000 4.0000
0.00000 0.00000 0.70000 0.67290 9.0000

declu 99

declu
declu(const ma, const aml, const amu, const amp);

ma in: square m×m matrix A
aml in: address of variable

out: m ×m matrix lower diagonal matrix L, has ones on the di-
agonal

amu in: address of variable
out: m×m matrix upper diagonal matrix U , LU = PA

amp in: address of variable
out: 2×m matrix, the first row holds the permutation matrix P ′,

A = (LU)[P ′][], the second row holds the interchange per-
mutations

Return value
Returns the result of the LU decomposition:

1 no error;
2 the decomposition could be unreliable;
0 the LU decomposition failed: the matrix is (numerically) singular.

Description
Computes the LU decomposition of a matrix A as: PA = LU by Gaussian elim-
ination (using accumulation of inner-products) with partial pivoting, as described,
e.g. in Wilkinson (1965, §4.39) (also see Golub and Van Loan, 1989 §3.4 for an
analysis). Note that L has ones on the diagonal.
The permutation matrix P ′ is stored as a vector of row indices so that A =
(LU)[P ′][] (see the example below). The actual permutation matrix P ′ = P−1

can be created as pt = (unit(rows(ma)))[vp][] where ma is the original ma-
trix, and vp holds the row indices as returned by declu (in the first row of amp, the
last argument). P can be computed as vp[][vp]. The second row of amp holds the
interchange permutations p, such that rows p[0][i] and i are swapped.

Error and warning messages
declu(): decomposition failed (the matrix is numerically singular)

See also
determinant, invert, solvelu

Example
#include <oxstd.oxh>
main()
{

decl ma, ml, mu, vp, mx;

ma = <3,17,10;2,4,-2;6,18,-12>;
declu(ma, &ml, &mu, &vp);
print((ml*mu)[vp[0][]][], (unit(rows(ma)))[vp[0][]][]);

mx = solvelu(ml, mu, vp, ma);
print(mx);

}

produces (note that the last matrix is the identity matrix: whether it has zeros, or
nearly zeros, could dependent on which Ox version was used):

100 Chapter 8 Function reference

3.0000 17.000 10.000
2.0000 4.0000 -2.0000
6.0000 18.000 -12.000

0.00000 1.0000 0.00000
0.00000 0.00000 1.0000
1.0000 0.00000 0.00000

1.0000 0.00000 0.00000
0.00000 1.0000 0.00000
0.00000 0.00000 1.0000

decmgs 101

decmgs
decmgs(const ma, const amq, const amr);

ma in: m× n matrix A
amq in: address of variable

out: n×m orthogonal matrix Q
amr in: address of variable

out: n× n matrix upper diagonal matrix R
Return value

Returns the result of the QR decomposition:
0: out of memory (runtime error),
1: success,
2: bad scaling: ratio of diagonal elements of R relative tot non-diagonal elements is large, rescaling is advised,

(min(Rii) ≤ ϵinv max(Rii))
−1: (A′A) is (numerically) singular

(Rii ≤ ϵinv

[∑i−1
j=1R

2
ji

]1/2
),

−2: combines 2 and −1.
The inversion epsilon, ϵinv , is set by the inverteps function.

Description
Computes the thin QR decomposition of a matrix A as: A = QR using
Rutishauser’s version of modified Gram-Schmidt (MGS) orthogonalization (this
handles singularity and re-orthogonalizes if necessary) If a column of A causes
singularity, the corresponding column of Q is set to zero.

See also
decqr

Example
#include <oxstd.oxh>
main()
{

decl ma, mq, mr;
ma = <2,1,4;5,1,7;8,1,9;11,1,12>;

decmgs(ma, &mq, &mr);
print("A=", ma, "QR", mq * mr, "I", mq’mq);

}

A=
2.0000 1.0000 4.0000
5.0000 1.0000 7.0000
8.0000 1.0000 9.0000
11.000 1.0000 12.000

QR
2.0000 1.0000 4.0000
5.0000 1.0000 7.0000
8.0000 1.0000 9.0000
11.000 1.0000 12.000

I
1.0000 0 0

0 1.0000 0.00000
0 0.00000 1.0000

102 Chapter 8 Function reference

decqr
decqr(const ma, const amq, const amr, const amp);

ma in: m× n matrix A
amq in: address of variable

out: n × m matrix upper diagonal matrix H ′, has ones on the
diagonal

amr in: address of variable
out: n× n matrix upper diagonal matrix R1

amp in: address of variable
(use 0 as argument to avoid pivoting; note that pivoting is
recommended)

out: 2 × n matrix, the first row holds the permutation matrix P ′,
the second row holds the interchange permutations

Return value
Returns the result of the QR decomposition:
0: out of memory,
1: success,
2: ratio of diagonal elements of A′A is large, rescaling is advised,

(ratio of smallest to largest ≤ ϵinv)
−1: (A′A) is (numerically) singular

(|Rii| ≤ ϵinv [maxj(A
′A)jj]

1/2
),

−2: combines 2 and −1.
The inversion epsilon, ϵinv , is set by the inverteps function.

Description
Computes the QR decomposition of a matrix A as: AP = QR based on House-
holder transformations with column pivoting, as described, e.g. in Golub and
Van Loan (1989, §5.4). A is m × n, Q is an m × m orthogonal matrix, and R
is an m×n upper diagonal matrix. Note that this function does not return Q and R.
Instead it returns R1, which is the min(n,m)×n upper block of R (the rest of R is
zero). Q′ is returned as an min(n,m)×m matrix H ′ which stores the Householder
vectors. H is lower diagonal with ones on the diagonal. H will have columns of
zeros if A is reduced rank (in that case pivoting is essential).
The decqrmul function uses H ′ to compute Q′Y .
The permutation matrix P ′ is stored in the same way as for declu.

See also
decqrmul (for another example), decqrupdate, inverteps, olsc, solvelu

Example
#include <oxstd.oxh>
main()
{

decl ma, mht, mr, mp, vp;
ma = <2,1,4;5,1,7;8,1,9;11,1,12>;

decqr(ma, &mht, &mr, &mp);
vp = mp[0][];
print("A=", ma, "A\’A", ma’ma,

"R\’R (ignoring pivoting)", mr’mr,

decqr 103

"R\’R (after undoing pivoting)", (mr’mr)[vp][vp]);
println("Note that mp[0][] contains P’:", vp);
println("The pivots on A (where AP=QR) are:",

sortcindex(vp’) ’);
}

A=
2.0000 1.0000 4.0000
5.0000 1.0000 7.0000
8.0000 1.0000 9.0000
11.000 1.0000 12.000

A’A
214.00 26.000 247.00
26.000 4.0000 32.000
247.00 32.000 290.00

R’R (ignoring pivoting)
290.00 247.00 32.000
247.00 214.00 26.000
32.000 26.000 4.0000

R’R (after undoing pivoting)
214.00 26.000 247.00
26.000 4.0000 32.000
247.00 32.000 290.00

Note that mp[0][] contains P’:
1.0000 2.0000 0.00000

The pivots on A (where AP=QR) are:
2.0000 0.00000 1.0000

104 Chapter 8 Function reference

decqrmul
decqrmul(const mht, const my);

decqrmul(const mht);

mht in: n×m matrix H ′ from decqr

my in: m× p matrix Y
Return value

Returns Q′Y , where Q is the orthogonal matrix derived from the QR decomposi-
tion. The version with one argument returns the m×m matrix Q′.

Description
The decqr composition returns Q in the form of householder vectors H ′. This
function may be used to obtain Q′Y or Q′ (the latter can be costly as it requires an
m ×m identity matrix). To compute QY , reverse the elements in each column of
H ′: decqrmul(reversec(mht), my).

See also
decqr, olsc, solvelu

Example
The example shows how to obtain Q′, reconstructs the original matrix, and imple-
ments regression using the QR decomposition (note that olsc is also QR based).
Because the input matrix is singular, the solution is not unique. Different versions
of Ox may find different solutions depending on differences in accumulation of
rounding errors.
#include <oxstd.oxh>
main()
{

decl iret, ma, maa, mht, mr, mp, mq, mb, vy;

ma = <1,2,3;1,5,6;1,8,9;1,11,12>;

iret = decqr(ma, &mht, &mr, &mp);
if (iret < 0)

println("Input matrix is singular");
print("H\’=", mht’, "R1=", mr, "pivots", mp);

mq = decqrmul(mht);
maa = mq’ * (mr | <0,0,0>);
print("Q\’=", mq’, "ma (pivoted)=", maa,

"ma=", maa[][mp[0][]]);

vy = <2;1;2;4>;
olsc(vy, ma, &mb);
print("regression coefficients (transposed)", mb’);

decl rank = sumr(fabs(diagonal(mr)) .> 1e-14);
println("rank=", rank);
mr[rank:][] = 0;

mb = solvelu(0, mr, 0, decqrmul(mht, vy)[:2][]);
print("from QR", mb’, "in correct order", mb[mp[0][]][]’);

}

Input matrix is singular

decqrmul 105

H’=
1.0000 0.00000 0.00000

0.30877 1.0000 0.00000
0.46316 -0.32710 1.0000
0.61755 -0.78925 0.46524

R1=
-16.432 -1.8257 -14.606
0.00000 -0.81650 0.81650
0.00000 0.00000 2.7577e-015

pivots
1.0000 2.0000 0.00000
2.0000 2.0000 2.0000

Q’=
-0.18257 -0.81650 0.54384 0.065078
-0.36515 -0.40825 -0.77363 0.31859
-0.54772 5.5511e-017 -0.084268 -0.83241
-0.73030 0.40825 0.31406 0.44874

ma (pivoted)=
3.0000 1.0000 2.0000
6.0000 1.0000 5.0000
9.0000 1.0000 8.0000
12.000 1.0000 11.000

ma=
1.0000 2.0000 3.0000
1.0000 5.0000 6.0000
1.0000 8.0000 9.0000
1.0000 11.000 12.000

regression coefficients (transposed)
0.50000 0.00000 0.23333

rank=
2.0000

from QR
0.23333 0.50000 0.00000

in correct order
0.50000 0.00000 0.23333

106 Chapter 8 Function reference

decqrupdate
decqrupdate(const amq, const amr, const i1, const i2);

decqrupdate(const amq, const amr, const i1);

amq in: address of m×m matrix Q
out: updated matrix Q

amr in: address of m× n matrix R
out: updated matrix R

No return value.
Description

Updates the QR decomposition using Givens rotations.
The version with only the i1 argument zeroes the subdiagonal elements from sub-
diagonal i1 to the diagonal (i.e. subdiagonal 0). It is assumed that subdiagonals
below i1 are already zero.
The version with both the i1 and i2 arguments zeroes the subdiagonal from column
i1 to column i2. It is assumed that columns before i1 are already zero below the
diagonal.
Both decqrupdate(&q, &a, 0, columns(r)); and decqrupdate(&q, &a,

rows(r)); compute a complete QR decomposition (like decqr, although decqr

does not compute Q explicitly). However, the decqrupdate function is primarily
intended to update a QR factorization.

See also
decqr, decqrmul

Example
The example shows first how the QR decomposition of an upper Hessenberg matrix
(a matrix with zeros below the subdiagonal) can be computed, and then updates
after appending a column to a lower triangular matrix.
#include <oxstd.oxh>
main()
{

decl ma, maa, mht, mr, mp, mq, mb, vy;

ma = <1,2,3,4,5;1,5,6,7,8;0,1,8,9,10;0,0,1,11,12>;

println("Upper Hessenberg matrix A", ma);
mr = ma;
mq = unit(sizer(ma));
decqrupdate(&mq, &mr, 1);
println("triangular R:", mr);
println("original:", mq*mr);

mr[1:][0] = 1;
mq = unit(sizer(ma));
println("Column 0 changed:", mr);
decqrupdate(&mq, &mr, 0, sizer(mr));
println("Made triangular:", mr);
println("original:", mq*mr);

}

Upper Hessenberg matrix A
1.0000 2.0000 3.0000 4.0000 5.0000

decqrupdate 107

1.0000 5.0000 6.0000 7.0000 8.0000
0.00000 1.0000 8.0000 9.0000 10.000
0.00000 0.00000 1.0000 11.000 12.000

triangular R:
1.4142 4.9497 6.3640 7.7782 9.1924

0.00000 2.3452 5.3300 5.7564 6.1828
0.00000 0.00000 6.4102 8.8637 9.9131
0.00000 0.00000 0.00000 9.7365 10.583

original:
1.0000 2.0000 3.0000 4.0000 5.0000
1.0000 5.0000 6.0000 7.0000 8.0000

0.00000 1.0000 8.0000 9.0000 10.000
0.00000 0.00000 1.0000 11.000 12.000

Column 0 changed:
1.4142 4.9497 6.3640 7.7782 9.1924
1.0000 2.3452 5.3300 5.7564 6.1828
1.0000 0.00000 6.4102 8.8637 9.9131
1.0000 0.00000 0.00000 9.7365 10.583

Made triangular:
2.2361 4.1793 9.2753 15.812 17.745

0.00000 3.5403 1.4789 -3.9779 -4.0002
0.00000 0.00000 4.6671 -0.80946 -0.78739
0.00000 0.00000 0.00000 -0.70954 -1.2216

original:
1.4142 4.9497 6.3640 7.7782 9.1924
1.0000 2.3452 5.3300 5.7564 6.1828
1.0000 3.8760e-016 6.4102 8.8637 9.9131
1.0000 3.8760e-016 8.6736e-018 9.7365 10.583

108 Chapter 8 Function reference

decschur, decschurgen

decschur(const ma, const amval, const ams, ...);

decschur(const ma, const amval, const ams, const amv,

const dselmin, const dselmax);

decschurgen(const ma, const mb, const amalpha, const ambeta,

const ams, const amt, ...);

decschurgen(const ma, const mb, const amalpha, const ambeta,

const ams, const amt, const amvl, const amvr, const dselmin,

const dselmax);

ma in: m×m matrix A
amval in: address of variable

out: complex eigenvalues: 2 × m matrix with eigenvalues of A
first row is real part, second row imaginary part
only real eigenvalues: 1×m matrix
The eigenvalues are not ordered unless dselmin and
dselmax are specified.

ams in: address of variable
out: upper quasi-triangular Schur form S, such that A = V SV ′

amv in: (optional) address of variable
out: orthogonal matrix V with Schur vectors: A = V SV ′

dselmin in: (optional) double, min absolute eigenvalue to move forward
dselmax in: (optional) double, max absolute eigenvalue to move forward
ma in: m×m matrix A
mb in: m×m matrix B for generalized Schur decomposition
amalpha in: address of variable

out: complex values: 2 × m matrix with α first row is real part,
second row imaginary part
only real αs: 1×m matrix
The generalized eigenvalues are (αr[j] + iαi[j])/β[j], j =
0, . . . ,m − 1. The generalized eigenvalues are not ordered
unless dselmin and dselmax are specified.

ambeta in: address of variable
out: 1×m matrix with β

ams in: address of variable
out: upper quasi-triangular Schur form S, with A = VlSV

′
r

amt in: address of variable
out: upper-triangular Schur form T , such that B = VlTV

′
r

amvl in: (optional) address of variable
out: orthogonal matrix Vl with left Schur vectors

amvr in: (optional) address of variable
out: orthogonal matrix Vr with right Schur vectors

dselmin in: (optional) double, minimum absolute generalized eigenvalue
to include move forward

dselmax in: (optional) double, maximum absolute generalized eigenvalue
to include move forward

decschur 109

Return value
Returns the result of the Schur decomposition:

0 no error;
1 maximum no of iterations reached;

-1 ill conditioning prevented ordering;
-2 rounding errors in ordering affected complex eigenvalues.

Description
The decschur function computes the Schur decomposition of a real matrix A:

A = V SV ′,

where V is orthogonal, and S upper quasi-triangular, with 2 × 2 blocks on the
diagonal corresponding to complex eigenvalues.
The decschurgen function computes the generalized Schur decomposition of two
real matrices A,B:

A = VlSV
′
r , B = VlTV

′
r ,

where V is orthogonal, and S upper quasi-triangular, with 2 × 2 blocks on the
diagonal corresponding to complex eigenvalues. T is an upper-triangular matrix.
The generalized eigenvalues are α[i]/β[i], where α may be complex and β is real.
The Schur decomposition can be ordered if the dselmin and dselmax arguments
are specified. Any (generalized) eigenvalues that are ≥ dselmin and ≤ dselmax in
absolute value, are selected for reordering, and moved top left. Note the reordering
may affect complex eigenvalue when the matrices are ill-conditioned.
Sources: these routines are based on LAPACK 3.0 (see LAPACK, 1999).

Error and warning messages
decschur(): maximum no. of iterations reached
decschurgen(): maximum no. of iterations reached

Example
#include <oxstd.oxh>

main()
{

decl a, b, ev, t, s, v, i, alpha, beta, vl, vr;
a = rann(4,4); b = rann(4,4);
print("a", a);

i = decschur(a, &ev, &s);
print("eigenvalues", ev);
print("s", s);

i = decschur(a, &ev, &s, &v);
print("v*s*v’", v*s*v’);

i = decschur(a, &ev, &s, &v, 0, 1);
print("cabs(eigenvalues) between 0 and 1 first, S=", s);

i = decschurgen(a, b, &alpha, &beta, &s, &t, &vl, &vr);
print("b", b);
println("decschurgen i=", i);
print("alpha", alpha);

110 Chapter 8 Function reference

print("beta", beta);
// print("s", s, "vl*s*vr’", vl*s*vr’);
print("t", t, "vl*t*vr’", vl*t*vr’);

decschurgen(a, unit(rows(a)), &alpha, &beta, &s, &t, &vl, &vr,0,1);
println("selecting gen. eigenvalues between 0 and 1 first");
print("generalized eigenvalues", alpha ./ beta);

}

produces
a

0.22489 1.7400 -0.20426 -0.91760
-0.67417 -0.34353 0.22335 -0.14139
-0.18338 0.68035 0.090558 -0.83328
0.81350 1.1174 0.31499 -0.50031

eigenvalues
-0.25959 -0.25959 -0.0046060 -0.0046060

1.3775 -1.3775 0.32694 -0.32694
s

-0.25959 -2.1654 -1.2665 -0.37296
0.87631 -0.25959 -0.51481 0.18777
0.00000 0.00000 -0.0046060 0.16910
0.00000 0.00000 -0.63214 -0.0046060

v*s*v’
0.22489 1.7400 -0.20426 -0.91760
-0.67417 -0.34353 0.22335 -0.14139
-0.18338 0.68035 0.090558 -0.83328
0.81350 1.1174 0.31499 -0.50031

cabs(eigenvalues) between 0 and 1 first, S=
-0.0046060 -0.20780 0.49340 0.64443

0.51441 -0.0046060 0.66321 0.24688
0.00000 0.00000 -0.25959 0.78487
0.00000 0.00000 -2.4177 -0.25959

b
-1.6268 0.61943 -1.4574 -1.8035
2.0016 0.57912 -0.70797 0.59336

-0.58939 1.4674 -0.020230 0.73706
1.4795 -0.26881 1.2282 1.5784

decschurgen i=0
alpha

1.9293 0.70758 -0.68938 -0.22323
beta

0.089639 3.2454 2.0066 1.7759
t

0.089639 0.68167 -0.46602 -0.52514
0.00000 3.2454 1.6897 -0.89339
0.00000 0.00000 2.0066 -0.75847
0.00000 0.00000 0.00000 1.7759

vl*t*vr’
-1.6268 0.61943 -1.4574 -1.8035
2.0016 0.57912 -0.70797 0.59336

-0.58939 1.4674 -0.020230 0.73706
1.4795 -0.26881 1.2282 1.5784

selecting gen. eigenvalues between 0 and 1 first
generalized eigenvalues

-0.0046060 -0.0046060 -0.25959 -0.25959
0.32694 -0.32694 1.3775 -1.3775

decsvd 111

decsvd
decsvd(const ma);

decsvd(const ma, const amu, const amw);

decsvd(const ma, const amu, const amw, const amv);
ma in: m× n matrix A
amu in: address of variable

out: m× n matrix U , U ′U = In
amw in: address of variable

out: 1× n matrix with diagonal of W
amv in: (optional argument) address of variable

out: if not 0 on input: n× n matrix V , UWV ′ = A, V ′V = In
Return value

Returns the result of the singular value decomposition:
• one argument: returns a 1 ×min(m,n) matrix with the singular values, or 0 if

the decomposition failed.
• two or more arguments: an integer indicating the result from the decomposition:

0 — no error;
k — if the k-th singular value (with index k − 1) failed after 50 iterations.

Note that the singular values are in decreasing order, with the columns of U, V
sorted accordingly.

Description
Decomposes a m× n matrix A, rank(A) = r > 0, into A = UWV ′:

U is m× n and U ′U = In, V is n× n and V ′V = In
W is n× n and diagonal, with non-negative singular values on the diagonal.

The rank of A is the number of non-zero diagonal elements of W .
Error and warning messages

decsvd(): decomposition failed
See also

§13.8.5.1, §13.8.5
Example

#include <oxstd.oxh>
main()
{

decl x=<1,2;3,4;5,6>, mu, mv, mw;
print("singular values: ", decsvd(x));
print("result = ", decsvd(x, &mu, &mw, &mv));
print(" A =", mu * diag(mw) * mv’);
decsvd(x’, &mu, &mw, &mv);
print(" A =", mu * diag(mw) * mv’);

}

produces
singular values:

9.5255 0.51430
result = 0 A =

1.0000 2.0000
3.0000 4.0000
5.0000 6.0000

A =
1.0000 3.0000 5.0000
2.0000 4.0000 6.0000

112 Chapter 8 Function reference

deletec, deleter, deleteifc, deleteifr
deletec(const ma);

deletec(const ma, const mval);

deleter(const ma);

deleter(const ma, const mval);

deleteifc(const ma, const mifc);

deleteifr(const ma, const mifr);
ma in: m× n matrix to delete from
mval in: p× q matrix with values to use for deletion
mifc in: p× n boolean matrix specifying columns to delete
mifr in: m× q boolean matrix specifying rows to delete

Return value
All functions return an empty matrix (<>) if the result is empty.
The deletec function with one argument returns anm×smatrix, deleting columns
from ma which have a missing value (NaN: not a number).
The deleter function with one argument returns an s × n matrix, deleting rows
from ma which have a missing value (NaN: not a number).

The remaining forms have no special treatment of missing values.

The deleter function with two arguments returns an s × n matrix, deleting the
rows from ma which have at least one element equal to an element in mval.
The deletec function with two arguments returns an m × s matrix, deleting the
columns from ma which have at least one element equal to an element in mval.
The deleteifc/deleteifr functions can be used to delete rows or columns based
on a logical expression: all rows (columns) which have a zero in the corresponding
row (column) are kept, the remainder is dropped.
The deleteifc function returns anm×smatrix, deleting only those columns from
ma which have at least one non-zero element in the corresponding column of mifc.
The deleteifr function returns an s×n matrix, deleting only those rows from ma

which have at least one non-zero element in the corresponding row of mifr.
See also

dropc/r, selectc/r, selectrc, selectifc/r, isdotnan, vecindex
Example

#include <oxstd.h>
main()
{

decl m = <.,1,2,3;4:7;8,9,.,11>;
print(m, "Rows with .NaN deleted", deleter(m));
print("%r", {"deleter","deleteifr"},

deleter(m, <1,.NaN>) | deleteifr(m, m .< 6 .|| m .>= 14));
}

produces:
.NaN 1.0000 2.0000 3.0000

4.0000 5.0000 6.0000 7.0000
8.0000 9.0000 .NaN 11.000

Rows with .NaN deleted
4.0000 5.0000 6.0000 7.0000

deleter 4.0000 5.0000 6.0000 7.0000
deleteifr 8.0000 9.0000 .NaN 11.000

denschi 113

denschi, densf, densn, denst
denschi(const ma, const df);

densf(const ma, const df1, const df2);

densn(const ma);

denst(const ma, const df);

ma in: arithmetic type
df in: arithmetic type, degrees of freedom
df1 in: arithmetic type, degrees of freedom in the numerator
df2 in: arithmetic type, degrees of freedom in the denominator

Return value
Returns the requested density at ma (the returned densities are positive):
denschi χ2(df) density
densf F(df1, df2) density
densn standard normal density
denst student-t(df) density

The return type is derived as follows:

returns ma degrees of freedom arguments
m× n matrix m× n matrix scalar
m× n matrix scalar m× n matrix
m× n matrix m× n matrix m× n matrix
double scalar scalar

See also
prob..., quan..., tail..., Probability package (§11.3)

114 Chapter 8 Function reference

determinant
determinant(const ma);

ma in: m×m matrix
Return value

Returns the determinant of ma. Return type is double.
Description

Computes the determinant of a matrix. The determinant is obtained from the LU
decomposition of the matrix (see declu). Use invert if both the inverse and deter-
minant are required. Note that for ill-conditioned or large matrices, the determinant
could be a very large or very small number.

Error and warning messages
determinant(): overflow (determinant set to DBL MAX E EXP)
determinant(): underflow (determinant set to 0)
determinant(): matrix is singular (determinant set to 0)
determinant(): unreliable (warns that the result may be unreliable)

See also
declu, invert, logdet

Example
#include <oxstd.oxh>
main()
{

print(determinant(<2,1;1,4>));
}

produces: 7

dfft 115

dfft
dfft(const ma);

dfft(const ma, const inverse);

ma in: 2 × n matrix (first row is real part, second row imaginary
part), or 1× n matrix (real part only, imaginary part is zero)

inverse in (optional argument), int:
1: do inverse discrete FT
2: do inverse discrete real FT

Return value
If only one argument is used, the return value is a 2 × n matrix which holds the
Fourier transform.
If inverse equals 1, the return value is a 2 × n matrix which holds the inverse
Fourier transform.
If inverse equals 2, the return value is a 1× n matrix which holds the inverse real
Fourier transform.

Description
Performs an (inverse) discrete Fourier transform. Computing the discrete Fourier
transform is of order n2, whereas the FFT is of order n log2(n), so much faster for
large sample sizes.
If the input has no complex part, in the absence of the inverse argument, a real FT
is performed.

See also
fft1d

Example
#include <oxstd.oxh>
main()
{

print("dfft", dfft(<1,0,1>), "fft1d", fft1d(<1,0,1>),
"inverse dfft(dfft))", dfft(dfft(<1,0,1>), 2));

}

produces
dfft

2.0000 0.50000 0.50000
0.00000 0.86603 -0.86603

fft1d
2.0000 0.50000 0.50000

0.00000 0.86603 -0.86603
inverse dfft(dfft))

1.0000 -1.4599e-016 1.0000

116 Chapter 8 Function reference

diag
diag(const ma);

ma in: double, or m× 1 or 1×m matrix
Return value

Returns a m×m matrix with ma on the diagonal.
See also

diagonal, diagonalize, toeplitz
Example

#include <oxstd.oxh>
main()
{

print(diag(<1,1>), diag(<1;1>));
}

produces
1.0000 0.00000
0.00000 1.0000

1.0000 0.00000
0.00000 1.0000

diagcat
diagcat(const ma, const mb, ...);

ma in: m× n matrix
mb in: p× q matrix
... in: optional additional matrices

Return value
Returns a matrix with all arguments concatenated along the diagonal; the off-
diagonal blocks are set to zero. With two arguments, the returned matrix is
(m+ p)× (n+ q).

Example
#include <oxstd.oxh>
main()
{

print(diagcat(<2,2>, unit(2)));
decl am = {<2,2>, unit(2), 3 * unit(3)};
print("%3.0f", diagcat(...am));

}

produces
2.0000 2.0000 0.00000 0.00000

0.00000 0.00000 1.0000 0.00000
0.00000 0.00000 0.00000 1.0000

2 2 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 3 0
0 0 0 0 0 0 3

diagonal 117

diagonal
diagonal(const ma);

diagonal(const ma, const upr);

diagonal(const ma, const upr, const lwr);

ma in: arithmetic type
upr in: (optional argument), int: upper bandwidth (≥ 0, default 0)
lwr in: (optional argument), int: lower bandwidth (≤ 0, default 0)

Return value
The version with one argument returns a matrix with the diagonal from the specified
matrix in the first row. Note that the diagonal is returned as a row vector, not a
column. If ma ism×n, the returned matrix is 1×min(m,n) (exception: 0×0 when
m = 0); if ma is scalar, the returned matrix is 1× 1.
The version with more than one argument extracts the matrix in band format. If
A = (aij) is m× n input matrix, then the output matrix ma = Ab is formed as:

...
0 0 a2,3 · · ·
0 a0,1 a1,2 · · ·
a0,0 a1,1 a2,2 · · ·
a1,0 a2,1 a3,2 · · ·

... 0


The diagonal is returned with diagonal(., 0, 0).

See also
decldlband (for another example), diag, diagonalize, setdiagonal

Example
#include <oxstd.oxh>
main()
{

decl x = <1:5;11:15;21:25>;
print("%6.0f", diagonal(x));
print("%6.0f", diagonal(x, 1, -1));

}

produces
1 12 23

0 2 13 24
1 12 23 0
11 22 0 0

118 Chapter 8 Function reference

diagonalize
diagonalize(const ma);

ma in: arithmetic type
Return value

Returns a matrix with the diagonal of ma on its diagonal, and zeros in off-diagonal
elements. If ma is m× n, the returned matrix is m× n; if ma is scalar, the returned
matrix is 1× 1.

See also
diag, diagonal, setdiagonal

Example
#include <oxstd.oxh>
main()
{

print(diagonalize(constant(2, 3, 4)));
}

produces
2.0000 0.00000 0.00000 0.00000
0.00000 2.0000 0.00000 0.00000
0.00000 0.00000 2.0000 0.00000

diff 119

diff, diff0
diff(const ma);

diff(const ma, const ilag);

diff(const ma, const ilag, const dmisval);

diff0(const ma);

diff0(const ma, const ilag);

diff0(const ma, const ilag, const dmisval);

ma in: T × n matrix A
ilag in: int, lag length of difference (1 for first difference; this is the

default), or matrix with lag lengths
dmisval in: (optional argument) double, value to set missing observa-

tions to (default is 0 for diff0, .NaN for diff)
Return value

The diff function returns a T×nmatrix with the ilagth difference of the specified
matrix, whereby missing values are replaced by .NaN. E.g. the result matrix r using
second differences (ilag = 2) is:
r[0][0] = .NaN r[0][1] = .NaN ...
r[1][0] = .NaN r[1][1] = .NaN ...
r[2][0] = ma[2][0]-ma[0][0] r[2][1] = ma[2][1]-ma[0][1] ...
r[3][0] = ma[3][0]-ma[1][0] r[3][1] = ma[3][1]-ma[1][1] ...
r[4][0] = ma[4][0]-ma[2][0] r[4][1] = ma[4][1]-ma[2][1] ...
...

The result has the same dimensions as ma.
The diff0 function is the same, but using zero for the missing value (by default).

Description
Differences the specified matrix, missing values are replaced by zero (unless a miss-
ing value is specified as the third argument). Using the lag operator L, for a column
a = (a0, . . . , aT−1)

′ of A, this function computes (1 − Ld)a. For d = 1, this is:
(0, a1−a0, . . . , aT−1−aT−2)

′. The value of dmust be integer, but may be negative
(a forward difference). Note that (1− L0)a = 0.

See also
lag, lag0

Example
#include <oxstd.oxh>
main()
{

print(diff0(<1:5>’,2));
}

produces
0.00000
0.00000
2.0000
2.0000
2.0000

120 Chapter 8 Function reference

discretize
discretize(const vx, const dmin, const dmax,

const icount, const ioption);

mx in: 1× T data vector
dmin in: double, first point a
dmax in: double, last point b
icount in: int, number of points M
ioption in: int, 0: raw discretization; 1: weighted discretization

Return value
Returns a 1×M matrix with the discretized data.

Description
Define a horizontal axis a, a + δ, a + 2δ, . . . , b, where δ = (b − a)/(M − 1).
The return value is the observation count, where each data value is assigned to the
nearest point on the horizontal axis (this is raw discretization). Points outside the
interval [a− δ/2, b+ δ/2) are ignored. The sum of the return value corresponds to
the number of data points actually used.
In weighted discretization, an observation which falls between two points is dis-
tributed to both points, with weight proportional to the distance.

See also
countc, lib/DensEst.ox (for an application)

Example
In this example, the three intervals are [−3,−1), [−1, 1) and [1, 3). So the last
observation of x will be ignored. The raw discretization simply counts the numbers
in each interval, giving the first line of output. The weighted version looks at the
distance to the points −2, 0, 2 (also printed as the last output line): −3 is to the
left of the minimum, so fully assigned to the first interval. Apart from −1, all
observations are exactly on a point, so fully assigned; −1 falls halfway between −2
and 0, so half is assigned to the first interval, and half to the second (if the value
would have been −1.5, 0.75 would go to the first interval, 0.25 to the second.
#include <oxstd.oxh>
main()
{

decl a = -2, b = 2, m = 3, t;
decl x = <-3,-2,-1,0,2,3>;

t = a + (b - a) * range(0, m - 1) / (m - 1);
print(discretize(x, a, b, m, 0)

| discretize(x, a, b, m, 1) | t);
}

produces
2.0000 2.0000 1.0000
2.5000 1.5000 1.0000
-2.0000 0.00000 2.0000

double 121

double
double(const ma);

ma in: arithmetic type
Return value

Casts the argument to a double:

input returns
integer converted to a double
double unchanged
matrix element 0,0
string see §13.8.2.4 (also see the example under fread)
other types error

See also
int, matrix, string, §13.8.2.4

122 Chapter 8 Function reference

dropc, dropr
dropc(const ma, const midxc);

dropr(const ma, const midxr);

dropr(const aa, const midxr);

ma in: m× n matrix to delete from
aa in: m array to delete from
midxc in: scalar or p× q matrix with the indices of columns to delete
midxr in: scalar or p× q matrix specifying the index of rows to delete

Return value
The dropc function returns a copy of ma with the specified columns deleted.
The dropr function returns a copy of the input matrix with the specified rows
deleted; dropr also works for arrays.

All functions return an empty matrix (<>) if all rows or columns are deleted (or
empty array for arrays).

See also
deleteifc, deleteifr, insertc, insertr, vecindex

Example
#include <oxstd.oxh>
main()
{

decl x = <1,2,3;4,5,6>;
print(dropc(x, 1), dropr(x, 1));
print(insertc(x, 0, 1));

decl a = {{"A","B"},{1,2},{<1>,<2>}};
println("dropr(a, <1,2>)", dropr(a, <1,2>));
println("a[0]=", a[0], "dropr(a[0], <1>)", dropr(a[0], <1>));
println("insertr(a[0], 0, 2)", insertr(a[0], 0, 2));

}

produces
1.0000 3.0000
4.0000 6.0000

1.0000 2.0000 3.0000

0.00000 1.0000 2.0000 3.0000
0.00000 4.0000 5.0000 6.0000

dropr(a, <1,2>)
[0][0] = A
[0][1] = B
a[0]=
[0] = A
[1] = B
dropr(a[0], <1>)
[0] = A
insertr(a[0], 0, 2)
[0] = .Null
[1] = .Null
[2] = A
[3] = B

eigen 123

eigen, eigensym
eigen(const ma, const amval);

eigen(const ma, const amval, const amvec);

eigensym(const ms, const amsval);

eigensym(const ms, const amsval, const amsvec);

ma in: m×m matrix A
amval in: address of variable

out: complex eigenvalues: 2 × m matrix with eigenvalues of A
first row is real part, second row imaginary part
only real eigenvalues: 1×m
The eigenvalues are not sorted.

amvec in: address of variable
out: complex eigenvectors: 2m ×m matrix with eigenvectors of

A in columns top m ×m block is real part, bottom m ×m
block is imaginary part
only real eigenvalues: m × m matrix with eigenvectors in
columns (the vectors are scaled by the largest absolute ele-
ment in the vector)

ms in: symmetric m×m matrix As

amsval in: address of variable
out: 1 × m matrix with eigenvalues of As, sorted in decreasing

order
amsvec in: address of variable

out: m×m matrix with eigenvectors of As in columns
Return value

Returns the result of the eigenvalue decomposition:
0 no error;
1 maximum no of iterations (50) reached.

Description
Computes the eigenvalues of a real matrix and a symmetric real matrix. The
eigensym function delivers the eigenvalues sorted, with the largest first. If eigen-
vectors are requested, these are in corresponding order.
The eigen function uses the balanced form of the matrix. (eigensym: if the matrix
has elements of widely varying order of magnitude, the smaller elements should be
in the bottom right hand corner.)
Sources: these routines are based on algorithms by J.H. Wilkinson and colleagues
in Numerische Mathematik (Martin, Reinsch, and Wilkinson, 1968, Martin and
Wilkinson, 1968b, Martin and Wilkinson, 1968a, Parlett and Reinsch, 1969, Pe-
ters and Wilkinson, 1970, Dubrulle, 1970). From Ox version 3.2 onwards, the
non-symmetric eigenvalue code is based on LAPACK 3.0 (see LAPACK, 1999).

Error and warning messages
eigen(): maximum no. of iterations reached
eigensym(): maximum no. of iterations reached

124 Chapter 8 Function reference

Example
#include <oxstd.oxh>
main()
{

decl meval, mevec;

print("result=", eigensym(<2,1;1,3>, &meval, &mevec));
print(" eigenvalues:", meval, "eigenvectors:", mevec);

print("result=", eigen(<2,1;-3,1>, &meval));
print(" eigenvalues:", "%r",

{"real", "imaginary"}, meval);
}

produces
result=0 eigenvalues:

3.6180 1.3820
eigenvectors:

-0.52573 0.85065
-0.85065 -0.52573

result=0 eigenvalues:
real 1.5000 1.5000
imaginary 1.6583 -1.6583

eigensymgen 125

eigensymgen
eigensymgen(const ma, const mb, const amval,const amvec);

ma in: symmetric m×m matrix A
mb in: symmetric positive definite m×m matrix B
amval in: address of variable

out: 1×m matrix with sorted (generalized) eigenvalues of A
amvec in: address of variable

out: n×m matrix (generalized) eigenvectors of A in columns
Return value

Solves the general eigenproblem Ax = λBx. returning the result of the eigenvalue
decomposition:

0 no error;
1 maximum no of iterations (50) reached.

–1 Choleski decomposition failed.
Description

Solves the general eigenproblem Ax = λBx, where A and B are symmetric, B
is also positive definite. The problem is transformed in standard eigenproblem by
decomposing B = CC ′ = LDL′ and solving Py = λy, where y = C ′x, P =
C−1AC ′−1

Error and warning messages
eigensymgen(): matrices not conformant
eigensymgen(): maximum no. of iterations reached
eigensymgen(): decomposition failed (Choleski decomposition)

See also
decldl, eigensym

Example
#include <oxstd.oxh>
main()
{

decl meval, mevec;

print("result = ",
eigensymgen(<2,1;1,3>,<1,0;0,1>, &meval, &mevec));

print(" generalized eigenvectors:", mevec);
}

produces
result = 0 generalized eigenvectors:

-0.52573 0.85065
-0.85065 -0.52573

126 Chapter 8 Function reference

eprint
eprint(const a, ...);

a in: any type
. . . in: any type

Return value
Returns the number of arguments supplied to the function.

Description
Prints to stderr. See print for a further description.

See also
fprint, print, sprint

Example
#include <oxstd.oxh>
main()
{

eprint("\nerror message\n");
}

prints error message to the console (even when the output is redirected to a file).

erf
erf(const ma);

ma in: arithmetic type
Return value

Returns the error function of each element of ma, of double or matrix type.
Description

The error function is related to the normal CDF as follows:

erf(x) = 2Φ(x
√
2)− 1.

See also
cerf, probn

exclusion 127

exclusion
exclusion(const ma, const mb);

exclusion(const ma, const mb, const amidx);

ma in: matrix
mb in: matrix
amidx in: address of matrix

out: 2×cmatrix, first row is index of exclusion in ma, second row
is index in mb.

Return value
Returns the sorted unique elements of ma which are not in mb as a row vector. Re-
turns an empty matrix if the result is empty. Missing values are skipped.

See also
intersection, union, unique

Example
#include <oxstd.oxh>
main()
{

decl x = <-1,1,.,-2,-2,.,4>, y = <3,3,.,-2,1>;
format("%5.1g");
print("exclusion", exclusion(x, y));
print("intersection", intersection(x, y));
print("union", union(x, y));
print("union using unique", unique(x ~ y));

}

produces
exclusion

-1 4
intersection

-2 1
union

-2 -1 1 3 4
union using unique

-2 -1 1 3 4

exit
exit(const iexit);

iexit in: integer, exit code
No return value.
Description

Exits the Ox run-time environment. The specified exit code is ignored.

128 Chapter 8 Function reference

exp
exp(const ma);

ma in: arithmetic type
Return value

Returns the exponent of each element of ma, of double or matrix type.
See also

log

Example
#include <oxstd.oxh>
main()
{

print(exp(<0,1>));
}

produces
1.0000 2.7183

expint
expint(const ma);

ma in: arithmetic type
Return value

Returns the exponential integral Ei(x) of each element of ma, of double or matrix
type.

Description
Note that E1(x) = −Ei(−x). The function is based on the Fortran code in Netlib
by W.J. Cody.

fabs 129

fabs
fabs(const ma);

ma in: int, double, matrix
Return value

Returns the absolute value of each element of ma, of the same type as ma.
Example

#include <oxstd.oxh>
main()
{

print(fabs(<-1.1,1.1>));
}

produces
1.1000 1.1000

factorial
factorial(const ma);

ma in: arithmetic type
Return value

Returns the factorial function at the rounded value of each element of ma, of double
or matrix type.
For negative integers, the function returns .NaN.

Description
Computes the factorial:

n! = n× (n− 1)× (n− 2) . . . 2× 1.

The gamma function is related to the factorial for integer arguments: if n is integer
then Γ(n+ 1) = n!.
Often a ratio of factorials functions is needed. Note that the factorial can overflow
rapidly. However, often there is an offsetting factor in the denominator/numerator,
and it is advised to use the loggamma or binomial function instead in that case.
Computation is based on the gammafunc function.

See also
binomial, gammafunc

130 Chapter 8 Function reference

fclose
fclose(const file);

file in: an open file which is to be closed
Return value

Returns 0.
Description

Closes the specified file, which was previously opened by a call to fopen. All open
files are automatically closed when the program exits. On some operating systems,
there is a limit on the number of open files.
Use fclose("l") to close the log file.

See also
fopen, fprint (for an example)

fcopy
fcopy(const dest, const src);

dest in: string with destination file name
src in: string with source file name

Return value
Copies a file, returning 1 if suvccessful, 0 for failure.

feof, fflush
feof(const file);

fflush(const file);

file in: an open file
Return value

The feof function checks for end of file; returns 0 if not at end of file, a non-zero
value otherwise. fflush flushes the file buffer.

fexists
fexists(const file);

file in: string with filename
Return value

Returns 1 if the file exists, 0 otherwise.

fft 131

fft, fft1d
fft(const ma);

fft(const ma, const inverse);

fft1d(const ma);

fft1d(const ma, const inverse);

ma in: 2 × n matrix (first row is real part, second row imaginary
part), or 1× n matrix (real part only, imaginary part is zero)

inverse in (optional argument), int:
1: do inverse FFT
2: do inverse real FFT

Return value
If only one argument is used, the return value is a 2 × s matrix which holds the
Fourier transform.
If inverse equals 1, the return value is a 2 × s matrix which holds the inverse
Fourier transform.
If inverse equals 2, the return value is a 1× s matrix which holds the inverse real
Fourier transform.
For fft1d, s = n, so it returns the same number of columns as the input.
But fft pads with zeros until a power of two is reached: s is the smallest power of
2 which is ≥ n.

Description
Performs an (inverse) fast Fourier transform. The code is based on FFTE 2.0 by
Daisuke Takahashi, see www.ffte.jp. FFTE provides Discrete Fourier Transforms
of sequences of length 2p3q5r, which has been extended to work for all sample size.
If the input has no complex part, in the absence of the inverse argument, a real
FFT is performed.

See also
for some applications: lib/AcfFft.ox, lib/DensEst.ox

Example
#include <oxstd.oxh>
main()
{

print(fft(<1,0,1>), fft(fft(<1,0,1>), 2));
}

produces
2.0000 0.00000 2.0000 0.00000

0.00000 -0.00000 0.00000 0.00000

1.0000 0.00000 1.0000 -0.00000

132 Chapter 8 Function reference

find
find(const where, const what);

find(const where, const what, const mode);
where in: object to search in
what in: what to search for
mode in (optional argument, default is empty string), string control-

ling search method: "i", "ir", "r"; add . to apply to each
string element, ^ to match start, $ to match end

Return value
where what return type
m-vector c-vector c× 1 matrix with indices of occurrence

(or −1 if not found)
array of strings array of c string c× 1 matrix with indices of occurrence

(or −1 if not found)
array of strings string int: index of occurrence of string what,

or −1 if not found
array of strings string mode has ".": m × 1 matrix with in-

dices of occurrence (or −1 if not found)
string string int: index of occurrence of substring

what, or −1 if not found
string r × c matrix with rc×1 matrix with indices of occurrence

character values (−1 if not found)
string character int: index of occurrence of character

what, or −1 if not found
array of objects object reference int: index of occurrence of class object

(−1 if not found)
Description

When strings are involved, this function is identical to the strfind family, except
that the return value is a column vector. The default is case-sensitive forward search;
use mode ”i” to ignore case, ”r” to search in reverse order, ”ir” to do both.
When the two arguments are a vector (either column or row), find returns the
location of the what elements in where (the numbers have to match exactly, or
both be a missing value). The return value is a row vector with the same number
of elements as what. Only the first instance will be located if there are multiple
occurences in where; use vecindex to find all occurences of a certain value.

See also
replace, strfind, vecindex

Example
#include <oxstd.oxh>
main()
{

decl x1 = <4;0;3> ~ <0;4;1>, xm = <4;3;2;1;0> ~ <.;.;2;3;.>, x2;

x2 = xm;
println("before, x1=", x1, "x2=", x2);
println("vecindex - sorted indices (column):",

vecindex(x2[][0], x1[][0]));

find 133

x2 = xm;
println("find returns the locations (column):",

find(x2[][0], x1[][0]));

// no find failures:
decl sel = find(x2[][0], x1[][0]);
x2[sel][1] = x1[][1];
println("can be used to insert the missing values in x2:", x2);

// not all found:
x2 = xm;
sel = find(x2[][0], x1[][0] | 5);
decl selfound = vecindex(sel .>= 0);
x2[sel[selfound]][1] = x1[selfound][1];
println("redo, but now with a value that is not found:", x2);

decl sarr = {"","aaz","baba","a","","a",6};
println("using find on: ", "%v", sarr);
println("find first empty string: ", "%v", find(sarr, ""));
println("find all empty strings: ", "%v", find(sarr, "", "."));
println("find all that equal a: ", "%v", find(sarr, "", "."));
println("find last that equals a: ", "%v", find(sarr, "a", "r"));
println("find a in each string: ", "%v", find(sarr, "a", "."));
println("find strings ending in a: ", "%v", find(sarr, "a", ".$"));

}

produces:
before, x1=

4.0000 0.00000
0.00000 4.0000
3.0000 1.0000

x2=
4.0000 .NaN
3.0000 .NaN
2.0000 2.0000
1.0000 3.0000

0.00000 .NaN
vecindex - sorted indices (column):

0.00000
1.0000
4.0000

find returns the locations (column):
0.0000
4.0000
1.0000

can be used to insert the missing values in x2:
4.0000 0.00000
3.0000 1.0000
2.0000 2.0000
1.0000 3.0000

0.00000 4.0000
redo, but now with a value that is not found:

4.0000 0.00000
3.0000 1.0000
2.0000 2.0000
1.0000 3.0000

134 Chapter 8 Function reference

0.00000 4.0000
using find on: {"","aaz","baba","a","","a",6}
find first empty string: 0
find all empty strings: <0;-1;-1;-1;0;-1;-1>
find all that equal a: <0;-1;-1;-1;0;-1;-1>
find last that equals a: 5
find a in each string: <-1;0;1;0;-1;0;-1>
find strings ending in a: <-1;-1;3;0;-1;0;-1>

findsample 135

findsample
findsample(const mdata, const vvarsel, const vlagsel,

const it1, const it2, const imode, const ait1, const ait2);

mdata in: T × n data matrix
vvarsel in: p-dimensional selection vector with indices in mdata

or empty matrix to use whole mdata as selection
vlagsel in: p-dimensional vector with lag lengths for selection

or empty matrix to use no lags
it1 in: int, first observation index to consider (≥ 0)
it2 in: int, last observation index to consider (can use −1 for T − 1)
mode in: int, sample selection mode

SAM ALLVALID: all observations must be valid
SAM ENDSVALID: only the first and last observation must be
wholly valid (there may be missing observations in between)
SAM ANYVALID: first and last obs. must have some valid data

ait1 in: address of variable
out: the first observation index

ait2 in: address of variable
out: the last observation index

Return value
The number of observation in the selected sample.

Example
#include <oxstd.oxh>
main()
{

decl x = range(0,5)’ ~ range(10,15)’, t1, t2;
x[2][1] = x[5][1] = .NaN; x[4][] = .NaN;

println(x);
findsample(x, <>, <>, 0, -1, SAM_ALLVALID, &t1, &t2);
println("SAM_ALLVALID: t1=", t1, " t2=", t2);
findsample(x, <>, <>, 0, -1, SAM_ENDSVALID, &t1, &t2);
println("SAM_ENDSVALID:t1=", t1, " t2=", t2);
findsample(x, <>, <>, 0, -1, SAM_ANYVALID, &t1, &t2);
println("SAM_ANYVALID: t1=", t1, " t2=", t2);

findsample(x, <0,0>, <0,1>, 0, -1, SAM_ALLVALID, &t1, &t2);
println("SAM_ALLVALID: t1=", t1, " t2=", t2, " column 0,lags 0-1");

}

0.00000 10.000
1.0000 11.000
2.0000 .NaN
3.0000 13.000
.NaN .NaN

5.0000 .NaN
SAM_ALLVALID: t1=0 t2=1
SAM_ENDSVALID: t1=0 t2=3
SAM_ANYVALID: t1=0 t2=5
SAM_ALLVALID: t1=1 t2=3 column 0, lags 0-1

136 Chapter 8 Function reference

floor
floor(const ma);

ma in: arithmetic type
Return value

Returns the floor of each element of ma, of double or matrix type. The floor is the
largest integer less than or equal to the argument.

See also
ceil (for an example), round, trunc

fmod
fmod(const ma, const mb);

ma in: arithmetic type
mb in: arithmetic type

Return value
Returns the floating point remainder of ma / mb. The sign of the result is that of
ma. The return type is double if both ma and mb are int or double. If ma is a matrix,
the return type is a matrix of the same size, holding the floating point remainders
ma[i][j]/mb[i][j], etc. The return type is derived as follows:

returns ma mb

m× n matrix m× n matrix scalar
m× n matrix scalar m× n matrix
m× n matrix m× n matrix m× n matrix
double: scalar scalar

See also
imod

Example
#include <oxstd.oxh>
main()
{

print(fmod(3,2), " ", fmod(-3,2), " ",
fmod(3,-2), " ", fmod(-3,-2));

}

produces: 1 -1 1 -1

fopen 137

fopen
fopen(const filename);

fopen(const filename, const smode);

filename in: name of file to open
smode in: text with open mode (optional, default is ”r”)

Return value
Returns the opened file if successful, otherwise the value 0. Use isfile to test if
fopen was successful.

Description
The smode argument can be:
"w" open for writing;
"r" open for reading (the default when omitting this argument);
"a" open for appending;
"r+" open for reading and writing (update);
"l" open a log file for writing (use "la" to append).

In addition, the following letters can be used in the smode argument:
b Opens the file in binary mode (Windows only). Binary leaves a \r\n as \r\n,

whereas non-binary translates \r\n to \n on output (and vice versa on output).
On Windows, it is customary to open text files without the b, and binary files
(when using fread and fwrite) with the b.

e Forces the file reading and writing (using fread and fwrite) to be in little-endian
mode. Note that no big-endian architectures are supported at the moment.

E Forces the file reading and writing (using fread and fwrite) to be in big-endian
mode on a little-endian machine.

v Print a message if opening the file failed.
V Print a message if opening the file failed, then generate a run-time error.

When using "r+", it is necessary to use fseek or fflush when switching from
reading to writing. To send the output from all print and println statements to a
file (in addition to the screen), use fopen(filename,"l").
fopen for writing will create a folder if specified, e.g.: fopen("test/test.txt",
"w") creates the test folder if it does not exist yet.

Finally, it is possible to read from a zip file, by specifying the archive name, followed
by two slashes, followed by the name in the archive. For example

file = fopen("mydata/data.zip//data/data.in7");

opens the file data/data.in7 in the zip archive mydata/data.zip. Ox will
search for data.zip in the standard way. It is not possible to write to a zip file.

See also
fclose, fflush, fprint (example), fread, fscan, fseek, fwrite, isfile

138 Chapter 8 Function reference

format
format(const sfmt);

sfmt in: string: new default format for double or int
or int: new line length for matrix printing

No return value.
Description

Use this function to specify the default format for double and int types. The function
automatically recognizes whether the format string is for int or double (otherwise
it is ignored). The specified double format will also be used for printing matrices.
See under the print function for a complete description of the formatting strings.
Use an integer argument to set the line length for matrix printing (default is 1024).
The default format strings are:

int "%d"

double "%5g"

matrix each element "%#13.5g", 6 elements on a
line (depending on the line length).

Notes:
• The print function allows setting of format for the next argument only.
• Be careful with the %f format. For example, when printing 1e-300, the output

field will need 302 characters.
• By default, integers and doubles are printed without a leading space. To use

a space as separator: format(" %d");. Specifying a wider field can also in-
sert extra spaces: format("%6d");. For a double, you could set the field to
"%#13.5g". Because at most 7 characters are needed on top of the 5 for signif-
icant digits, this format will always have at least one space.

• When a matrix is printed, no extra space is inserted between elements. So,
make sure that the field width is at least one character larger than the maximum
number of printed characters (as is the case for "%#13.5g" and "%13.5g").

See also
fprint, print, sprint

fprint 139

fprint, fprintln
fprint(const file, const a, ...);

fprintln(const file, const a, ...);

file in: file which is open for writing
a in: any type
. . . in: any type

Return value
Returns the number of arguments supplied to the function.

Description
Prints to the specified file. See print for a further description. fprintln is as
fprint but ensures the next output will be on a new line.

See also
fclose, fopen, print

Example
#include <oxstd.oxh>
main()
{

decl file = fopen("test.tmp", "w");

if (isfile(file))
{

fprintln(file, "some text");

fclose(file);
}

}

produces a file test.tmp with the specified text.

140 Chapter 8 Function reference

fread
fread(const file, const am, ...);

fread(const file, const am, const type, const r, const c);

file in: file which is open for writing, or string with filename
am in: address, address for storing read item
type in: (optional argument), type of object to read, see below
r in: (optional argument), number of rows to read; default is 1 if

argument is omitted
c in: (optional argument), number of columns to read; default is 1

if argument is omitted, unless file is opened with f, in which
case the number of columns is read from the file

Return value
Returns an integer:
−1 nothing read, because end-of-file was reached;
0 nothing read, unknown error;

> 0 object read, return value is size which was actually read:

type data type read return value

’i’, ’d’ integer 1
’e’, ’f’ double 1 (r and c omitted, or both equal to 1)
’e’, ’f’ matrix r × c
’c’ character 1 (if r = 1: just one byte read)
’c’ string r (if r > 1: r bytes read)
’s’ string string length
’4’ float 1 (r and c omitted, or both equal to 1)
’4’ float matrix r × c

When reading a matrix, for example as fread(file,&x,’f’,r,c), the size of
x will always be r by c. If less than rc elements could be read, the matrix is
padded with zeros. If no elements could be read at all, because the end of the
file was reached, the return value is –1.
The ’4’ format reads 4-byte real values (‘float’), these are not written by Ox,
but may be needed to read externally created files.
The ’s’ type reads a string up to (and including) the first null character or the
end of file; “̊nis translated to “n.
When the file is a string, it is opened with fopen and automatically closed when
fread is finished.

Description
Reads binary data from the specified file. The byte ordering is the platform specific
ordering, unless the f format was used (also see fopen and fwrite).

See also
fclose, fopen, fscan, fseek, fwrite, sscan (example that gets a file from a zip
file as a string)

Example
A number of input/output examples is in the samples/inout directory. The pro-
grams inout10 and inout11 show how data can be read and written in blocks.

fremove 141

fremove
fremove(const filename);

filename in: name of file or folder to remove
Return value

Returns 1 if the file or folder was removed successfully, 0 otherwise. Note that only
empty folders will be removed.

fscan
fscan(const file, const a, ...);

file in: file which is open for writing
a in: any type
. . . in: any type

Return value
Returns the number of arguments successfully scanned and assigned, or -1 when
the end of the file was encountered and nothing was read.

Description
Reads text from a file. The arguments are a list of scanning strings and the addresses
of variables.
A scanning string consists of text, optionally with a format specifier which starts
with a % symbol. The string is truncated after the format. Any text which precedes
the format, is skipped in the file. A space character will skip any white space in the
file.
If the scanning string holds a format (and assignment is not suppressed in the for-
mat), the string must be followed by the address of a variable.
The format specification is similar to that for the scanf function of the C language:

%[* or #][width]type

The width argument specifies the width of the input field. A * suppresses assign-
ment. A # can only be used with m and M.

Notes:
• The "%m" and "%M" formats can be used to read a matrix from a file. They first

read the number of rows and columns, and then the matrix row by row; this
corresponds to the format used by loadmat.
No dimensions are read by "%#m" and "%#M", in that case the scanning string
has to be followed by two integers indicating the number of rows and columns
to be read. For fscan the two integers can be −1. In that case all numbers are
read and returned as a column vector.

• When scanning a string type with "%s", "%z", or "%c", the maximum length
which can be read is 16384. The sprintbuffer function can be used to enlarge
the buffer size.

• The "%z" format reads a whole line up to \n, the \n (and \r) are removed from
the return value. If the line in the file is too long, the remainder is skipped.

• The "%t" and "%T" formats can be used to read a token, using a simplified
syntax that is similar to Ox code. Five types of tokens are distinguished:

142 Chapter 8 Function reference

Table 8.1 Formatting types for scanning

double type:
e,f,g field is scanned as a double value
le,lf,lg field is scanned as a double value
C field is scanned as a calendar double value
integer type:
d signed decimal notation,
i signed decimal notation,
o unsigned octal notation,
x unsigned hexadecimal notation,
u unsigned decimal notation,
c (no width) scan a single character (i.e. one byte),
string type:
s scan a string up to the next white space,
z scan a whole line,
c (width > 1) scan a number of characters,
matrix type:
m,M scan a matrix row by row,
token type:
t scan a token, returning the value,
T scan a token, returning a triplet.
any type:
v scan an Ox constant.

SCAN EOF End of the file or text.
SCAN IDENTIFIER An identifier.
SCAN LITERAL A literal integer, double or string.
SCAN SYMBOL A symbol.
SCAN SPACE White space.
The "%t" version returns the value that was read, while "%T" returns an array
with three elements: the value, the actual text that was read and the token type
(SCAN ...).
Note that a negative number is read as two tokens: a minus symbol and the
value. Space is returned as a token. To skip leading spaces use " %t" and
" %T". Note that fscan may reach the end (i.e. return −1) before it gets to
process the token, so the return value of fscan should be taken into account.
The token format can be useful when a simple parser is required, or to read
strings that are not delimited by white space. An example using sscan is given
below.

• The "%C" format is used to scan a date/time field written in ISO format:
yyyy-mm-dd, hh:mm::ss.hh, or yyyy-mm-ddThh:mm::ss.hh. Examples are
1999-03-31, 13:10 (a 24-hour clock is used, seconds and hundreds are op-
tional) and 1999-3-31T13:10.
Years with week number are also recognised, e.g. 1976-W3 returns the calendar

fscan 143

index for the Monday of week 3 in 1976. (Week 1 is the first week that contains
the first Thursday; or equivalently, the week that contains 4 January.)

• The "%v" format reads a variable that has been written in the format of an Ox
constant. It is especially useful to read a variable that consist of a derived types,
such as an array or a class object, but also for a matrix. When scanning a class
object, the variable must already have the type of that class (using new), because
the scan functions cannot create the object themselves. An example is given in
ox/samples/inout/percent v.ox and under the print function.

See also
fprint, fread, print, scan, sscan (for another example)

Example
The example (samples/inout/iotest2.ox) writes a file, and reads it twice. The
first time, the string read is tinker123, but then reading gets stuck, because the
word tailor can not be read is an integer, double or matrix. Failure to read the
matrix dimension generates an error message.
The second time, the file is read properly.
#include <oxstd.oxh>
main()
{

decl file;

file = fopen("iotest2.txt", "w");
fprint(file, "tinker123\ntailor456.78\n 2 2 1 0 0 1\n");
fclose(file);

decl c = -2, s, i = 0, d = 0, m = 0;

file = fopen("iotest2.txt");
println("Next statement will print message: "

"\"load matrix: no matrix elements\"");

c = fscan(file, "%s", &s, // stops after &s
"%d", &i, "%f", &d, "%m", &m);

fclose(file);

print("\nitems read=", c, " s=", s, " int=", i,
" dbl=", d, " mat=", m);

file = fopen("iotest2.txt");
c = fscan(file, "tinker%d", &i, " tailor%f", &d, "%m", &m);
fclose(file);

print("\nitems read=", c, " int=", i, " dbl=", d,
" mat=", m);

// token example:
decl str = "GMM(\"a\", 1.5, -3);";
decl func, arg0, arg1, arg2, arg3;

println("\ntoken string: ", str);
sscan(str, "%t", &func, "(%t", &arg0, ", %f", &arg1,

", %d", &arg2);
println("scanned using \"%t\": ", func, " ", arg0,

144 Chapter 8 Function reference

" ", arg1, " ", arg2);

sscan(str, "%T", &func, "(%T", &arg0, ", %T", &arg1,
", %T", &arg2, "%T", &arg3);

println("scanned using \"%T\":", func, arg0, arg1, arg2, arg3);
}

produces
Next statement will print message: "load matrix: no matrix elements"
load matrix: no matrix elements

items read=1 s=tinker123 int=0 dbl=0 mat=0
items read=3 int=123 dbl=456.78 mat=

1.0000 0.00000
0.00000 1.0000

token string: GMM("a", 1.5, -3);
scanned using "%t": GMM a 1.5 -3
scanned using "%T":
[0] = GMM
[1] = GMM
[2] = 0

[0] = a
[1] = "a"
[2] = 1

[0] = 1.5
[1] = 1.5
[2] = 1

[0] = -
[1] = -
[2] = 2

[0] = 3
[1] = 3
[2] = 1

fseek 145

fseek
fseek(const file);

fseek(const file, const type);

fseek(const file, const type, const r);

file in: file which is open for writing
type in: (optional argument), type of object use in seeking, see below
r in: (optional argument), number of rows to move; default is 1 if

argument is omitted
Return value

The first form, with only the file argument, tells the current position in the file as
an offset from that start of the file (as the standard C function ftell). The return
vale is an integer, except in 64-bit Ox when the file is larger than 2GB: in that case
it is a double.
The second and third form return 0 if the seek was successful, else a non-zero num-
ber,

Description
Repositions the file pointer to a new position specified from the start of a file. The
type argument is interpreted as follows:
type seek data type byte equivalent
’i’, ’d’ integer 4r
’e’, ’f’ double 8r
’e’, ’f’ matrix rows 16 + 8rc (file opened with f in format)
’c’ character r

So when a file is opened as "rbf", fseek(file,’f’,r) moves the file pointer to
row r in the .fmt file.
To position the file pointer at the end specify −1 for the third argument. This can
be used to determine the length of a file, as the following example shows:

fseek(file, ’c’, -1); // move to end
length = fseek(file); // get byte position at end
::fseek(file, ’c’, 0); // move to beginning
fread(file, &s, ’c’, length); // read the whole file into s

See also
fclose, fopen

146 Chapter 8 Function reference

fsize, ftime
fsize(const file);

ftime(const file);

file in: an open file
Return value

fsize returns the size of the file in bytes (an integer, or a double if the file is larger
than 2GB).
ftime returns the modification date and time of the file (a double).

fwrite
fwrite(const file, const a);

file in: file which is open for writing, or string with filename
a in: int, double, matrix or string

Return value
Returns 0 if failed to write, or the number of items written to the file:

input return value (integer)

integer 1,
double 1,
m× n matrix number of elements written (normally m× n),
m× n matrix opened with f format: no of rows written (normally m),
string number of characters written.

Description
Writes binary data to the specified file.

See also
fclose, fopen, fread, fseek

Example
A number of input/output examples is in the samples/inout directory. The pro-
grams inout10 and inout11 show how data can be read and written in blocks.

gammafact 147

gammafact
gammafact(const ma);

ma in: arithmetic type
Return value

Returns the complete gamma function at the value of each element of ma, of double
or matrix type.
For argument zero, or a negative integer, the function returns .NaN.

Description
Computes the gamma function at the argument:

Γ(a) =

∫ ∞

0

xa−1e−xdx.

Note that:
aΓ(a) = Γ(a+ 1).

The gamma function is related to the factorial for integer arguments: if a = i is
integer then Γ(i+ 1) = i!.
Often a ratio of gamma functions is needed. Since the Gamma function can overflow
quite rapidly, it is advised to use the loggamma function instead.
The function is accurate to about 14 to 15 significant digits (a table is used to look up
integer values up to 13). The approximation uses a series expansion of the reciprocal
for arguments ≤ 13 (see Abramowitz and Stegun, 1984, §6.1.34). Otherwise the
exponential of the loggamma is used. For negative arguments the following relation
is used:

Γ(a) = − π

sin(πa)aΓ(−a)
.

See also
factorial, gammafunc, loggamma, polygamma

148 Chapter 8 Function reference

gammafunc
gammafunc(const dx, const dr);

mx in: x, arithmetic type
mr in: r, arithmetic type

Return value
Returns the incomplete gamma function Gx(r). Returns 0 if r ≤ 0 or x ≤ 0. The
accuracy is to about 10 digits.
The return type is derived as follows:

returns mx mr

m× n matrix m× n matrix scalar
m× n matrix scalar m× n matrix
m× n matrix m× n matrix m× n matrix
double scalar scalar

Description
The incomplete gamma function is defined as:

Gx(r) =

∫ t

0

1

Γ(r)
xr−1e−tdt, t > 0, r > 0.

Source: gammafunc uses Applied Statistics algorithm AS 239 (Shea, 1988).
See also

betafunc, loggamma, probgamma
Example

#include <oxstd.oxh>
#include <oxprob.oxh> // required for probgamma
main()
{

print(probgamma(5.99, 1, 0.5), " ",
gammafunc(5.99 * 0.5, 1), "\n");

print(probgamma(5.99, 0.5, 1), " ",
gammafunc(5.99, 0.5));

}

produces
0.949963 0.949963
0.999462 0.999462

getcwd 149

getcwd
getcwd();

Return value
Returns the current directory. Windows specific: returns the current directory on the
current drive. Use chdir to change the current drive.

See also
chdir, getfiles (for example), systemcall

getenv
getenv(const senv);

senv in: string
Return value

Returns a string with the value of the environment variable, or an empty string if the
environment variable is undefined.

See also
systemcall

getfiles, getfolders
getfiles(const sfilemask);

getfolders(const sfilemask);

sfilemask in: string, mask for files, may have a path or wild cards
Return value

getfiles returns an array of strings with file names matching the specified mask.
getfolders returns an array of strings with folder names matching the specified
mask.

See also
chdir, getcwd

Example
#include <oxstd.oxh>
main()
{

println("Current folder = ", getcwd());
chdir("D:\\OxMetrics6\\ox\\include");
//default:chdir("C:\\Program Files\\OxMetrics6\\ox\\include");
println("Current folder = ", getcwd());
println("Files in folder: ", getfiles("*.ox"));

}

produces
Current folder = D:\Waste
Current folder = D:\OxMetrics6\ox\include
Files in folder:
[0] = g2ox.ox
[1] = oxgauss.ox
[2] = ox_init.ox

150 Chapter 8 Function reference

headc
headc(const ma, const cr);

headc(const ma);

ma in: T × n matrix A
cr in: int, number of rows to take from the head (negative: number

to drop from the tail), default is 1
Return value

If r > 0: r × n matrix A[: r − 1][], where r = min(r, T).
If r < 0: r × n matrix A[: r − 1][], where r = max(T + r, 1).
Returns an empty matrix if r < 1.

See also
peakc

hyper 2F1 151

hyper 2F1
hyper_2F1(const a, const b, const c, const z);

a,b,c in: arithmetic type, parameters of 2F1

z in: arithmetic type, argument of 2F1

Return value
Returns the value of the Gauss Hypergeometric function 2F1 with real parameters
a, b, c and real argument z.

Description
The Gauss hypergeometric function is defined as:

2F1(a, b; c; z) =

∞∑
i=0

(a)i(b)i
(c)ii!

zi ≡ F (z) (8.2)

for argument |z| < 1 and parameters a, b ∈ C, c ∈ C\{⊬,−⊮,−⊭, ...}. The hy-
pergeometric function is extended to z ∈ C by analytic continuation. The function
does not exist when c = 0 or for c a negative integer (unless a or b is a smaller
negative integer or zero). The principal branch corresponds to |ph(1−z)| ≤ π. The
notation in (8.2) uses the Pochhammer symbol:

(a)i = a(a+ 1)(a+ 2)...(a+ i− 1), (a)0 = 1.

The Pochammer symbol can be expressed as a ratio of gamma functions:

(a)i =
Γ(a+ i)

Γ(a)
.

provided a is not zero or a negative integer.
On the unit circle |z| = 1, the Gauss hypergeometric function converges absolutely
when R(c − a − b) > 0, converges conditionally when −1 < R(c − a − b) ≤ 0
(except for z = 1), and diverges otherwise. Abramowitz and Stegun (1970, Ch. 15)
and Olde Daalhuis (2010) provide more information.

152 Chapter 8 Function reference

idiv, imod
idiv(const ia, const ib);

imod(const ia, const ib);

ia in: arithmetic type
ib in: arithmetic type

Return value
The imod function returns the integer remainder of int(ia) / int(ib). The sign
of the result is that of ia.
The idiv function returns the result of the integer division int(ia) / int(ib).
The return type is a matrix of integer values if either arguments is a matrix, else it
is a scalar int.

See also
fmod

Example
#include <oxstd.oxh>
main()
{

print(idiv(3,2), " ", idiv(-4,2), " ",
idiv(3,-2), " ", idiv(-4,-2), " ");

print(imod(3,2), " ", imod(-3,2), " ",
imod(3,-2), " ", imod(-3,-2));

}

produces: 1 -2 -1 2 1 -1 1 -1

insertc, insertr
insertc(const ma, const c, const cadd);

insertr(const ma, const r, const radd);

insertr(const aa, const r, const radd);

ma in: m× n matrix to insert into
aa in: m array to insert into
c in: scalar, column index of insertion
cadd in: scalar, number of columns of zeros to add
r in: scalar, row index of insertion
radd in: scalar, number of rows of zeros to add

Return value
The insertc function returns a copy of the input matrix with the specified columns
of zeros inserted.
The insertr function returns a copy of the input matrix with the specified rows of
zeros inserted; insertr also works for arrays.

See also
dropc (for an example), dropr

int 153

int
int(const ma);

ma in: arithmetic type
Return value

Casts the argument to an integer:

input returns
integer unchanged
double rounded towards zero
matrix element 0,0 rounded towards zero
string element 0
other types error

See also
ceil (for an example), double , matrix , trunc, §13.8.2.4

intersection
intersection(const ma, const mb);

intersection(const ma, const mb, const amidx);

ma in: matrix
mb in: matrix
amidx in: address of matrix

out: 2 × c matrix, the first row is the index of the common
elements in vecr(ma), the second row is the index in
vecr(mb). The order of the indices correspond to the order
of the return value.

Return value
Returns the sorted unique elements of ma which are also in mb as a 1 × c vector,
where c is the number of elements ma and mb have in common. Returns an empty
matrix if the result is empty. Missing values are skipped.

See also
exclusion (for an example), union, unique

154 Chapter 8 Function reference

invert
invert(const ma);

invert(const ma, const alogdet, const asign);

ma in: m×m real matrix A
alogdet in: (optional argument) address of variable

out: double, logarithm of the absolute value of the determinant
asign in: (optional argument) address of variable

out: int, the sign of the determinant of A; 0: singular;
−1,−2: negative determinant; +1,+2: positive determi-
nant; −2,+2: result is unreliable

Return value
Returns the inverse of A, or the value 0 if the decomposition failed.

Description
Inverts the matrix A using the LU decomposition (see under declu). The exponent
of the log-absolute-determinant can only be computed for values ≤ DBL MAX E EXP

and ≥ DBL MIN E EXP (see Ch. 9). Note that 1 / ma also returns the inverse (if ma
is square, invert is tried, if that fails, or the matrix is not square, the generalized
inverse is used), see §13.8.5 and invertgen.

Error and warning messages
invert(): decomposition failed (the matrix is numerically singular)

See also
declu, invertgen, invertsym, logdet

Example
#include <oxstd.oxh>
main()
{

decl mp = <4,1;1,3>;
print(invert(mp)*mp ~ invertsym(mp)*mp);

}

produces (note that the both matrices are the identity matrix: whether it has zeros,
or nearly zeros, could dependent on which Ox version was used):

1.0000 0.00000 1.0000 0.00000
0.00000 1.0000 0.00000 1.0000

inverteps
inverteps(const dEps);

dEps in: sets the inversion epsilon ϵinv to dEps if dEps > 0, to the
default if dEps < 0; leaves the value unchanged if zero

Return value
Returns the inversion epsilon (the new value if dEps != 0).

Description
The following functions return singular status if the pivoting element is less than or
equal to ϵinv: decldl, declu, decldlband, invert, invertsym, decmgs. Less
than 10ϵinv is used by olsc and olsr.
A singular value is considered zero when less than ||A||∞10ϵinv in rank,
nullspace, and when using the generalized inverse.
The default value for ϵinv is 1000× DBL EPSILON.

invertgen 155

invertgen
invertgen(const ma);

invertgen(const ma, const mode);

ma in: m× n matrix A
mode in: int, mode of inversion (optional argument, default is 0)

Return value
Returns the (generalized) inverse of A, or the value 0 if the decomposition failed.

Description

mode description A
0 generalized inverse using SVD
1 gen. symmetric p.s.d. inverse using SVD m = n, symmetric p.s.d.
2,20 first try invert then mode 0 m = n
3,30 first try invertsym then mode 1 m = n, symmetric p.s.d.
4,40 use olsc (QR dec.) for inverse of A′A m ≥ n
≥10 print warning if matrix is singular

0. When mode equals 0, or the mode argument is omitted, invertgen defaults to
the generalized inverse (see §13.8.5.1) when only one argument is used.

1. When mode equals 1, the matrix must be symmetric positive semi-definite. The
generalized inverse can use the fact that U = V in the singular value decompo-
sition. Do not use this mode for negative definite matrices.

2. Mode 2 first tries the normal inversion routine (invert), and then, if the matrix
is singular, uses the generalized inverse. This mode is the same as using 1 / x.

3. Mode 3 first tries the normal inversion routine (invertsym), and then, if the
matrix is singular, uses the generalized inverse (as mode 1). Do not use this
mode for negative definite matrices.

4. Mode 4 uses the QR decomposition, and the inverse is the same as obtained
from using olsc. This is a different type of generalized inverse, so that, when
the matrix is singular a different value is obtained then from the other modes.

If the matrix is full rank, the generalized inverse equals the normal inverse (for
modes 1,3 this also requires symmetry and positive definiteness).
When the mode argument is multiplied by ten, a warning is printed if the matrix is
singular (or negative definite for mode 30), but the return value is not affected.

Error and warning messages
invertgen: invert failed, proceeding with generalized inverse (mode 20
invertgen: invertsym failed, proceeding with generalized p.s.d. inverse (mode 30)
invertgen: matrix has reduced rank (mode 40)
invertgen: decomposition failed (some other problem)

See also
invert, invertsym

156 Chapter 8 Function reference

Example
#include <oxstd.oxh>
main()
{

decl x, xx;
x = rann(20,2);
x = x ~ x[][0];
xx = x’x;

println("\nAA^A=A:");
print(xx * invertgen(xx, 30) * xx - xx);
print(xx * invertgen(x, 40) * xx - xx);

println("These generalized inverses are different:");
print("Choleski failed, so use SVD", invertgen(xx, 3));
print("Using QR", invertgen(x, 4));

}

produces (note that the exact value of the zeros can depend on the computer platform
and the version of Ox):
AA^A=A:
Warning: invertgen: invertsym failed, proceeding with
generalized p.s.d. inverse
invertgen.ox (10): main

-1.4211e-014 -4.4409e-016 -1.4211e-014
-2.2204e-016 1.4211e-014 -2.2204e-016
-1.4211e-014 -4.4409e-016 -1.4211e-014

Warning: invertgen: matrix has reduced rank
invertgen.ox (11): main

-7.1054e-015 -6.6613e-016 -7.1054e-015
-8.8818e-016 3.5527e-015 -8.8818e-016
-7.1054e-015 -6.6613e-016 -7.1054e-015

These generalized inverses are different:
Choleski failed, so use SVD

0.014260 -0.0023020 0.014260
-0.0023020 0.049276 -0.0023020

0.014260 -0.0023020 0.014260
Using QR

0.057041 -0.0046039 0.00000
-0.0046039 0.049276 0.00000

0.00000 0.00000 0.00000

invertsym 157

invertsym
invertsym(const ma);

invertsym(const ma, const alogdet);

ma in: symmetric, positive definite m×m matrix A
alogdet in: (optional argument) address of variable

out: double, the logarithm of the determinant of A
Return value

Returns the inverse of A, or the value 0 if the decomposition failed.
Description

Inverts the symmetric positive definite matrix A using the Choleski decomposition
(see under decldl). The exponent of the log-determinant can only be computed for
values ≤ DBL MAX E EXP and ≥ DBL MIN E EXP (see Ch. 9).

Error and warning messages
invertsym(): decomposition failed (the matrix is numerically singular or negative
definite)

See also
decldl, invert (for an example), invertgen

isarray, isclass, isdouble, isfile, isfunction, isint, ismatrix,
ismember, isstring
isarray(const a);

isclass(const a);

isclass(const a, const sclass);

isdouble(const a);

isfile(const a);

isfunction(const a);

isint(const a);

ismatrix(const a);

ismember(const a, const smember);

isstring(const a);

a in: any type
sclass in: string, class name
smember in: string, member name

Return value
Returns TRUE (i.e. the value 1) if the argument is of the correct type, FALSE (0)
otherwise.
isclass(a, "class") returns TRUE if a is an object of type "class", or derived
from "class".
ismember returns 1 if a is an object of a class and has a function member
"smember"; 2 if "smember" is a data member and 0 otherwise.

See also
classname

158 Chapter 8 Function reference

isdotfeq, isfeq
isdotfeq(const ma, const mb);

isdotfeq(const ma, const mb, const fuzziness);

isfeq(const ma, const mb);

isfeq(const ma, const mb, const fuzziness);

ma in: arithmetic type
mb in: arithmetic type
fuzziness in: scalar (default 13), either specifies the number of significant

digits to use for the comparison, or, if less than one, the ab-
solute distance.

Return value
isfeq always returns an integer: it returns 1 if the argument ma is fuzzy equal to
mb, 0 otherwise. When strings are compared, the comparison is case insensitive.
isdotfeq returns a matrix if either argument is a matrix; the matrix consists of
0’s and 1’s: 1 if the comparison holds, 0 otherwise. If both arguments are scalar,
isdotfeq is equal to isfeq.
In both cases the current fuzziness value is used.

Example
#include <oxstd.oxh>
main()
{

decl m1 = <1+1e-17,1-1e-17;1+1e-17,1-1e-17 >;
decl m2 = <1+1e-17,1-1e-10;1+1e-17,1-1e-17 >;

print("m1 is ", isfeq(m1,1) ? "" : "*** not *** ",
"fuzzy equal to 1\n");

print("m2 is ", isfeq(m2,1) ? "" : "*** not *** ",
"fuzzy equal to 1\n");

print(isdotfeq(m1,1));
}

produces
m1 is fuzzy equal to 1
m2 is *** not *** fuzzy equal to 1

1.0000 1.0000
1.0000 1.0000

isdotinf
isdotinf(const ma);

ma in: arithmetic type
Return value

Returns a matrix of the same dimensions if the input is a matrix; the returned matrix
consists of 0’s and 1’s: 1 if the element is +/- infinity, 0 otherwise. If the arguments
is a double, isdotinf returns 1 if the double is +/- infinity.

See also
isdotmissing, isdotnan

isdotmissing 159

isdotmissing, isdotnan, ismissing, isnan
isdotmissing(const ma);

isdotnan(const ma);

ismissing(const ma);

isnan(const ma);

ma in: arithmetic type
Return value

isnan always returns an integer: it returns 1 if any element in ma is .NaN (not a
number), 0 otherwise. .NaN can be used to indicate a missing value.
isdotnan returns a matrix of the same dimensions if the input is a matrix; the
returned matrix consists of 0’s and 1’s: 1 if the element is NaN, 0 otherwise. If the
arguments is a double, isdotnan returns 1 if the double is NaN.
ismissing and isdotmissing are similar to isnan and isdotnan respectively.
However, in addition to NaN, they also treat +/− infinity and undefined (.Null)
as a missing value.

See also
deletec, deleter, selectc, selectr

Example
#include <oxstd.oxh>
main()
{

decl m1 = <1,2,3;4,5,6;7,8,9 >;
decl m2 = <1,.,3;4,5,.;7,8,9 >;

print("m1 has ", isnan(m1) ? "" : "*** no *** ",
"missing values\n");

print("m2 has ", isnan(m2) ? "" : "*** no *** ",
"missing values\n");

print(isdotnan(m2));
print("m2", m2, "rows with NaN deleted",

deleter(m2), deleteifr(m2, isdotnan(m2)));
}

produces
m1 has *** no *** missing values
m2 has missing values

0.00000 1.0000 0.00000
0.00000 0.00000 1.0000
0.00000 0.00000 0.00000

m2
1.0000 .NaN 3.0000
4.0000 5.0000 .NaN
7.0000 8.0000 9.0000

rows with NaN deleted
7.0000 8.0000 9.0000

7.0000 8.0000 9.0000

160 Chapter 8 Function reference

lag, lag0
lag(const ma);

lag(const ma, const ilag);

lag(const ma, const ilag, double dmisval);

lag0(const ma);

lag0(const ma, const ilag);

lag0(const ma, const ilag, double dmisval);

ma in: T × n matrix
ilag in: int, lag length, or matrix with lag lengths (default is 1)
dmisval in: (optional argument) double, value to set missing observa-

tions to (default is 0)
Return value

Returns a T×nmatrix with the lags of the specified matrix, whereby missing values
are replaced by zero. E.g. the result matrix r using two lags is:
r[0][0] = .NaN r[0][1] = .NaN ...
r[1][0] = .NaN r[1][1] = .NaN ...
r[2][0] = m[0][0] r[2][1] = m[0][1] ...
r[3][0] = m[1][0] r[3][1] = m[1][1] ...
...

The result has the same dimensions as ma.
The lag0 function is the same, but using zero for the missing value (by default).
If ilag is a matrix the return value corresponds to lag0(.,ilag[0]) ~

lag0(.,ilag[1]) ~...

Description
Lags the specified matrix, missing values are replaced by .NaN (unless a missing
value is specified as the third argument or lag0 is used). Using the lag operator
(also called backshift operator) L: this computes:

Lkat = at−k for t− k ≥ 0,

and missing values for t− k < 0.
Note that a negative value for ilag will create leads.

See also
diff, diff0

Example
#include <oxstd.oxh>
#include <oxfloat.oxh> // reguired for M_NAN
main()
{

print(lag0(<1:5>’, 2) ~ lag(<1:5>’, 2));
}

produces
0.00000 .NaN
0.00000 .NaN
1.0000 1.0000
2.0000 2.0000
3.0000 3.0000

limits 161

limits
limits(const ma);

ma in: m× n matrix
Return value

Returns a 4× n matrix:
1st row: minimum of each column of ma
2nd row: maximum of each column of ma
3rd row: row index of minimum (lowest index if more than one exists)
4th row: row index of maximum (lowest index if more than one exists)

See also
max, maxc, maxcindex, min, mincindex

Example
#include <oxstd.oxh>
main()
{

decl m = rann(7,2);
print(range(0, rows(m)-1)’ ~ m,

"%r", {"column min","column max",
"row index of min","row index of max"}, limits(m));

}

produces
0.00000 0.22489 1.7400
1.0000 -0.20426 -0.91760
2.0000 -0.67417 -0.34353
3.0000 0.22335 -0.14139
4.0000 -0.18338 0.68035
5.0000 0.090558 -0.83328
6.0000 0.81350 1.1174

column min -0.67417 -0.91760
column max 0.81350 1.7400
row index of min 2.0000 1.0000
row index of max 6.0000 0.00000

162 Chapter 8 Function reference

loadmat

loadmat(const sname);

loadmat(const sname, const iFormat);

loadmat(const sname, const aasNames);

sname in: string containing an existing file name
iFormat in: (optional argument, .mat matrix file only)

1: file has no matrix dimensions; then the matrix is returned
as a column vector, and reshape can be used to create a
differently shaped matrix.

in: (optional argument, spreadsheet files only)
1: strings are loaded as values and dates translated to Ox
dates, as in OxMetrics or the database class.
0 (the default): strings are treated as empty cells, unless a dot
or starting with #N/A), and dates are read using the Excel
numbering instead of Ox (.xlsx files). For a date after 1-
Mar-1900: oxdate = exceldate + 2415019.

aasNames in: (optional argument, not for .mat matrix files) address of
variable

out: array of strings, names of data columns.
Return value

Returns the matrix which was read, or 0 if the operation failed.
Description

The type of file read depends on the extension of the file name:

.mat matrix file (text file), described below,

.dat data file (text file) with load information,

.oxdata OxMetrics data file (.in7,.bn7 zipped together),

.in7 PcGive 7 data file (with corresponding .bn7 file),

.xlsx Excel 2007 (or newer) workbook file (Office Open xml),

.csv comma-separated spread sheet file (text file),

.csv.zip csv file (zipped),

.zip csv file (zipped),

.dta Stata data file (version 4–6 or 113–117),
any other as .mat file.

This function does not retrieve information on data frequency and sample periods.
To retrieve such information, use the Database class.
A matrix file holds a matrix, preceded by two integers which specify the number of
rows and columns of the matrix. It will normally have the .mat extension. White
space and a comma between numbers are skipped. If a symbol is found which is
not a number, then the rest of the line will be skipped (so, e.g. everything following
; or // is treated as comments). The exception to this is an isolated dot, the letters
m and M or the words .NaN and #N/A: these are interpreted as a missing with value
NaN (Not a Number); .Inf is interpreted as infinity.
If the iFormat argument equals 1, the file is assumed not to contain matrix dimen-
sion (if it does, they will be the first two elements in the matrix).

loadmat 163

An example of a matrix file is:

2 3 //<-- dimensions, a 2 by 3 matrix

//comment //<-- a line of comment

1 0 0 //<-- first row of the matrix

0 1 .5 //<-- second row of the matrix

The other file formats are described in more detail in the Database class (under
the Load functions), and in the OxMetrics book. Note that all file formats work
identically on whatever platform Ox runs on. So an .xlsx file could be written
with Ox on OS X, then transferred (in binary mode) to a Windows machine, and
read into Ox for Windows. Ox takes care of differences in byte ordering when
writing and reading binary files (always using little-endian format).
Warning: Excel may write csv files with only single precision (9 significant digits,
rather than the 17 that are needed for loss-less saving).

Error and warning messages
loadmat(): file not found
loadmat(): no matrix elements
loadmat(): not enough matrix elements

See also
Database class, savemat, reshape

Example
#include <oxstd.oxh>
main()
{

decl m = unit(2), as;

savemat("t.mat", m);
print(m, loadmat("t.mat"));

savemat("t.in7", m, {"AA", "BB"});
loadmat("t.in7", &as);
println("names", as);

}

produces
1.0000 0.00000

0.00000 1.0000

1.0000 0.00000
0.00000 1.0000

names
[0] = AA
[1] = BB

and a file called t.mat:
2 2

1.0000000000000000e+000 0.0000000000000000e+000
0.0000000000000000e+000 1.0000000000000000e+000

164 Chapter 8 Function reference

loadsheet

loadsheet(const sname);

loadsheet(const sname, const iSheet);

loadsheet(const sname, const iSheet, const bConvertDates);

sname in: string containing an existing file name
iSheet in: (optional argument), int: sheet number (default

is zero)
bConvertDates in: (optional argument), int: 1: convert dates to Ox;

0: keep dates (default is one)
Return value

Returns a two-dimensional array with the elements of the spreadsheet. The elements
are .Null (blank in the sheet), double or string.
Returns an empty array if the file cannot be read.

Description
The type of file read depends on the extension of the file name:

.xlsx Excel 2007 (or newer) workbook file (Office Open xml),

.csv comma-separated spread sheet file (text file),
any other as .xlsx file.

This function does not retrieve information on data frequency and sample periods.
To retrieve such information, use the Database class.
Warning: Excel may write csv files with only single precision (9 significant digits,
rather than the 17 that are needed for loss-less saving).

See also
Database class, loadmat

Example
#include <oxstd.oxh>

main()
{

decl convertdates = 1;
decl as1 = loadsheet("nodata.xlsx", 0, convertdates);
decl as2 = loadsheet("nodata.xlsx", 1, convertdates);

println("xlsx sheet 1:\n", "%v", as1);
if (convertdates)
{

println("date/time elements in sheet 1:");
println("[1][3]=", "%C", as1[1][3]);
println("[2][0]=", "%C", as1[2][0]);
println("[3][3]=", "%C", as1[3][3]);

}
println("Check ismissing in cell 0,2: ", ismissing(as1[0][2]));
println("Check isnan in cell 0,2: ", isnan(as1[0][2]));
println("Check ismissing in cell 2,2: ", ismissing(as1[2][2]));
println("Check isnan in cell 2,2: ", isnan(as1[2][2]));

println("xlsx sheet 2:\n", "%v", as2);

loadsheet 165

decl as3 = loadsheet("nodata.csv", 0, convertdates);
println("csv sheet:\n", "%v", as3);

decl mask = ones(sizeof(as1), sizeof(as1[1]));
for (decl i = 0; i < sizer(mask); ++i)

for (decl j = 0; j < sizer(mask); ++j)
if (as1[i][j] == .Null)

mask[i][j] = 0;

println("Key for nodata.xlsx:",
" 1: cell has a value, 0: cell is empty", "%3.0f", mask);

// saving
savesheet("iotest13_matrix.xlsx", rann(3,3));
decl adate = dayofcalendar(2017,11,23) - dayofcalendar(1900,1,1) + 2;
savesheet("iotest13_sheet.xlsx",

{{"AA","BB","CC"},{0,,2}, {5.1,.NaN,adate}});
}

produces (after inserting some additional line breaks):
xlsx sheet 1:
{ {"some text,","and text",.Null,.Null},

{.Null,"12bb",.Null,0.5},
{2455628.25,.Null,.NaN,.Null},
{.Null,15.16,.Null,2455628}

}
date/time elements in sheet 1:
[1][3]=12:00:00
[2][0]=2011-03-07T06:00:00
[3][3]=2011-03-07
Check ismissing in cell 0,2: 1
Check isnan in cell 0,2: 0
Check ismissing in cell 2,2: 1
Check isnan in cell 2,2: 1
xlsx sheet 2:
{ {"some more",.Null},

{.Null,99.900000000000006},
{"in second sheet",.Null}

}
csv sheet:
{ {"some text,","and text",.Null,.Null},

{.Null,"12bb",.Null,0.5},
{2455628.25,.Null,.NaN,.Null},
{.Null,15.16,.Null,2455628}

}
Key for nodata.xlsx: 1: cell has a value, 0: cell is empty
1 1 0 0
0 1 0 1
1 0 1 0
0 1 0 1

166 Chapter 8 Function reference

log, log10
log(const ma);

log10(const ma);

ma in: arithmetic type
Return value

The log function returns the natural logarithm of each element of ma, of double or
matrix type.
The log10 function returns the logarithm (base 10) of each element of ma, of double
or matrix type.

See also
exp

Example
#include <oxstd.oxh>
main()
{

print(log(<1,10>));
print(log10(<1,10>));

// the following shows how to prevent log(0)
// in the computation of y*log(y) using the
// dot-conditional operator:
decl y = range(0,4);
print(y .* log(y .> 0 .? y .: 1));

}

produces
0.00000 2.3026
0.00000 1.0000
0.00000 0.00000 1.3863 3.2958 5.5452

logdet
logdet(const ma, const asign);

ma in: m×m real matrix A
asign in: address of variable

out: int, the sign of the determinant of A; 0: singular;
−1,−2: negative determinant; +1,+2: positive determi-
nant; −2,+2: result is unreliable

Return value
Returns a double: the logarithm of the absolute value of the determinant of A (-.Inf
if the matrix is singular).

Description
Computes the determinant (the log of the absolute value and the sign) of a ma-
trix using the LU decomposition of the matrix (see declu). The exponent of log-
absolute-determinant can only be computed for values ≤ DBL MAX E EXP and ≥
DBL MIN E EXP (see Ch. 9).

See also
determinant, invert

loggamma 167

loggamma
loggamma(const ma);

ma in: arithmetic type
Return value

Returns the logarithm of the complete gamma function at the value of each element
of ma, of double or matrix type.
Returns .Inf for argument zero, and .NaN for any argument less than zero.

Description
Computes the logarithm of the gamma function at the argument:

log Γ(a) = log

∫ ∞

0

xa−1e−xdx for a > 0.

If a = i is integer then Γ(i+ 1) = i!.
Often the ratio of two gamma functions needs te be computed. This can be done as
Γ(a)/Γ(b) = exp(log Γ(a)− log Γ(b)), thus reducing the risk of overflow for large
arguments.
The function is accurate to about 14 to 15 significant digits (a table is used to look up
integer values up to 50). The approximation uses the recurrence relation to obtain an
argument greater than 8.5; then an asymptotic formula with eight terms is applied
(see Abramowitz and Stegun, 1984, §6.1.40).

See also
gammafact, gammafunc, polygamma

Example
#include <oxstd.oxh>
main()
{

print(loggamma(<0.5,1,10>));
}

produces
0.57236 0.00000 12.802

168 Chapter 8 Function reference

lower
lower(const ma);

ma in: m× n matrix
Return value

Returns the lower diagonal (including the diagonal), i.e. returns a copy of the input
matrix with strict upper-diagonal elements set to zero.

See also
setdiagonal, setupper, setlower, upper

Example
#include <oxstd.oxh>
main()
{

print(lower(ones(3,3)));
print(upper(ones(3,3)));

}

produces
1.0000 0.00000 0.00000
1.0000 1.0000 0.00000
1.0000 1.0000 1.0000

1.0000 1.0000 1.0000
0.00000 1.0000 1.0000
0.00000 0.00000 1.0000

matrix 169

matrix
matrix(const ma);

ma in: arithmetic type
Return value

Casts the argument to a matrix:

input returns
integer a 1× 1 matrix
double a 1× 1 matrix
matrix unchanged
string a 1× 1 matrix
other types error

See also
int, double, §13.8.2.4

max
max(const a, ...);

a in: arithmetic type
. . . in: arithmetic type

Return value
Returns the maximum value in all the arguments. The return type is int if all argu-
ments are of type int; otherwise the return type is double.

Description
Finds the maximum value in the arguments, ignoring missing values. Use the
dot-relational operator to find the element-by-element maximum or mimimum, see
Ch. 5.

See also
limits, maxc, min

Example
#include <oxstd.oxh>
main()
{

print(min(<1.5,12.5>, 1, 6), " ", max(<1.5,12.5>, 1, 6));
}

produces: 1 12.5

170 Chapter 8 Function reference

maxc, maxcindex, maxr
maxc(const ma);

maxcindex(const ma);

maxr(const ma);

ma in: m× n matrix A
Return value

The maxc function returns a 1× n matrix holding the maximum of each column of
ma.
The maxcindex function returns a 1× n matrix holding the row index of the maxi-
mum of each column of ma.
The maxr function returns a m× 1 matrix holding the maximum of each row of ma.

Description
Finds the maximum value in each column (row for minr), ignoring missing values.
If no maximum is found (a column has all missing values), then the maximum is
.NaN, and the index −1.

See also
limits, max, minc, mincindex

Example
#include <oxstd.oxh>
main()
{

decl x = <11,12;10,15>;
print("x = ", x);
println("maxc and maxcindex", maxc(x) ~ maxcindex(x));
println("minc and mincindex", minc(x) ~ mincindex(x));

}

produces
x =

11.000 12.000
10.000 15.000

maxc and maxcindex
11.000 15.000 0.00000 1.0000

minc and mincindex
10.000 12.000 1.0000 0.00000

meanc 171

meanc, meanr
meanc(const ma);

meanr(const ma);

ma in: T × n matrix A
Return value

The meanc function returns a 1×n matrix holding the means of the columns of ma.
The meanr function returns a T × 1 matrix holding the means of the rows of ma.

See also
sumc, sumr, varc, variance (for an example), varr

min
min(const a, ...);

a in: arithmetic type
. . . in: arithmetic type

Return value
Returns the minimum value in all the arguments, ignoring missing values. The
return type is int if all arguments are of type int; otherwise the return type is double.

Description
Finds the minimum value in the arguments. Use the dot-relational operator to find
the element-by-element maximum, see Ch. 5.

See also
limits, max (for an example), minc

minc, mincindex, minr
minc(const ma);

mincindex(const ma);

minr(const ma);

ma in: m× n matrix A
Return value

The minc function returns a 1× n matrix holding the minimum of each column of
ma.
The mincindex function returns a 1× n matrix holding the row index of the mini-
mum of each column of ma.
The minr function returns a m× 1 matrix holding the minimum of each row of ma.

Description
Finds the minimum value in each column (row for minr), ignoring missing values.
If no minimum is found (a column has all missing values), then the minimum is
.NaN, and the index −1.

See also
limits, maxc, maxcindex, min

172 Chapter 8 Function reference

moments
moments(const ma);

moments(const ma, const k);

moments(const ma, const k, const fratio);
ma in: T × n matrix A
k in: (optional argument) no of moments k (default is k = 4)
fratio in: (optional argument) 0: no ratios (default is moment ratios)

Return value
Returns an (k+1)×nmatrix holding in each column for the corresponding column
of ma:

row holds description
0 T ∗ effective sample size
1 m1 sample mean
2 m

1/2
2 sample standard deviation

3
√
b1 = m3/(m

3/2
2) sample skewness

4 b2 = m4/(m
2
2) sample kurtosis

. . .
k mk/(m

k/2
2) sample kth central moment ratio

(i.e. in deviation from mean)

If fratio equals 0, the moments are not divided:

row holds description
0 T ∗ effective sample size
1 m1 sample mean
2 m2 sample variance
. . .
k mk sample kth central moment (i.e. in deviation from mean)

Description
Computes the central moment ratios or central moments. Skips missing values.

See also
meanc, meanr, standardize, varc, varr

Example
The normal distribution N [µ, σ2] has central moments:

µr = E [X − EX]
r
=

{
0 if r is odd,

r!
(r/2)!

σr

2r/2
if r is even.

So the standard normal distribution has skewness√
β1 = µ3/µ

3/2
2 = 0,

and kurtosis
β2 = µ4/µ

2
2 = 3.

The exponential distribution exp(λ) has moments about zero:

µ′
r = EXr =

r!

λr
.

moments 173

Therefore, when λ = 2, the mean is 1/2, the variance 1/2− 1/4 = 1/4, etc.
#include <oxstd.oxh>
#include <oxprob.oxh>
main()
{

decl m1 = rann(10000,1) ~ ranexp(10000,1, 2);

print("moment ratios",
"%r", {"T","mean","std.dev.","skewness","kurtosis"},
"%c", {"normal", "exp(2)"}, moments(m1));

print("first 6 central moments",
"%r", {"mean", "variance", "m3", "m4", "m5", "m6"},
moments(m1, 6, 0)[1:][]);

}

produces
moment ratios

normal exp(2)
T 10000. 10000.
mean -0.011605 0.49592
std.dev. 1.0033 0.50088
skewness 0.010556 1.9876
kurtosis 3.0314 8.4267
first 6 central moments
mean -0.011605 0.49592
variance 1.0066 0.25088
m3 0.010660 0.24976
m4 3.0713 0.53039
m5 0.13868 1.1581
m6 15.774 2.9434

174 Chapter 8 Function reference

nans
nans(const r, const c);

nans(const ma);

r in: int
c in: int
ma in: matrix

Return value
nans(r,c) returns an r by c matrix filled with .NaN.
nans(ma) returns a matrix of the same dimension as ma, filled with .NaN.

See also
constant, ones, zeros

Example
#include <oxstd.oxh>
main()
{

print(nans(2, 2));
}

produces
.NaN .NaN
.NaN .NaN

norm 175

norm
norm(const ma);

norm(const ma, const itype);

ma in: arithmetic type
itype in: int, type of norm (default is 0 for infinity norm)

Return value
Returns the norm of a matrix.

Description
Computes the norm of a matrix A. The type of norm depends on the itype argu-
ment. When A is a matrix:

itype norm
0 ||A||∞ = max0≤i<m

∑n−1
j=0 |aij |,

1 ||A||1 = max0≤j<n−1

∑m−1
i=0 |aji|,

2 ||A||2 = largest singular value,

’F’ ||A||F =
(∑

i

∑
j |aij |2)

)1/2
,

–1 ||A||−∞ = min0≤i<m

∑n−1
j=0 |aij |.

The last one is the Frobenius norm. norm(x) corresponds to norm(x,0).
When A is a vector:

itype norm
0 ||a||∞ = maxi |ai|,
1 ||a||1 =

∑
i |ai|,

2 ||a||2 =
(∑

i(ai)
2
)1/2

,
p ||a||p = (

∑
i |ai|p)

1/p,
–1 ||a||−∞ = mini |ai|.

Again note that norm(x) corresponds to norm(x,0).
See also

decsvd, rank
Example

#include <oxstd.oxh>
main()
{

decl x = <1,2;3,4;5,6>;

print(norm(x), " ");
print(norm(x, 1), " ");
print(norm(x, 2), " ");
print(norm(x, ’F’));

}

produces: 11 12 9.52552 9.53939

176 Chapter 8 Function reference

nullspace
nullspace(const ma);

ma in: m× n matrix A
Return value

Returns the null space of ma, or a conformant empty matrix if ma is square and full
rank, or 0 if the SVD fails.

Description
Uses the SVD to compute the null space A⊥ of an m× n matrix A, as explained in
Appendix A1. If rank(A) = r and m ≥ n, the rank of the null space is p = m− r,
and A⊥ is an m × p matrix such that A′

⊥A⊥ = I and A′A⊥ = 0. The rank of A
is the number of non-zero singular values, which is determined as explained under
inverteps.

Error and warning messages
nullspace(): decomposition failed

See also
decsvd, inverteps

Example
#include <oxstd.oxh>
main()
{

decl ma = zeros(4,2);
ma[0][0] = ma[0][1] = 1;

print(ma, nullspace(ma));
}

produces
1.0000 1.0000

0.00000 0.00000
0.00000 0.00000
0.00000 0.00000

0.00000 0.00000 0.00000
0.00000 0.00000 -1.0000
0.00000 1.0000 -0.00000
1.0000 0.00000 -0.00000

ols2c 177

ols2c, ols2r, olsc, olsr

olsc(const my, const mx, const amb);

olsc(const my, const mx, const amb, const amxtxinv);

olsc(const my, const mx, const amb, const amxtxinv, const amxtx);

ols2c(const my, const mx, const amb);

ols2c(const my, const mx, const amb, const amxtxinv);

ols2c(const my, const mx, const amb, const amxtxinv, const amxtx);

my in: T × n matrix Y
mx in: T × k matrix X
amb in: address of variable

out: k × n matrix of OLS coefficients, B
amxtxinv in: (optional argument) address of variable

out: k × k matrix (X ′X)−1,
amxtx in: (optional argument) address of variable

out: k × k matrix (X ′X),
olsr(const my, const mx, const amb);

olsr(const my, const mx, const amb, const amxtxinv);

olsr(const my, const mx, const amb, const amxtxinv, const amxtx);

ols2r(const my, const mx, const amb);

ols2r(const my, const mx, const amb, const amxtxinv);

ols2r(const my, const mx, const amb, const amxtxinv, const amxtx);

my in: n× T matrix Y ′

mx in: k × T matrix X ′, T ≥ k
amb in: address of variable

out: n× k OLS coefficient matrix, B′

amxtxinv in: (optional argument) address of variable
out: k × k matrix (X ′X)−1,

amxtx in: (optional argument) address of variable
out: k × k matrix (X ′X),

Return value

0: out of memory,
1: success,
2: ratio of diagonal elements of X ′X is large, rescaling is advised,

(ratio of smallest to largest ≤ ϵinv)
−1: (X ′X) is (numerically) singular,

(decision made in decqr and decldl respectively).
−2: combines 2 and −1.

The inversion epsilon, ϵinv , is set by the inverteps function.
Description

olsc and olsr do ordinary least squares using the Householder QR decomposition
with pivoting (see, e.g., Golub and Van Loan, 1989, Ch. 5).
ols2c and ols2r form (X ′X) and solve the normal equations using the Choleski
decomposition (see decldl).
The QR based method for computing OLS is more accurate, but about half as fast

178 Chapter 8 Function reference

(unless T ≈ k), and more memory intensive than the normal equations approach
(the QR method uses a copy of the data to work on).
If (X ′X) is singular, the QR based method computes B and (X ′X)−1 with zeros
at the positions corresponding to the singular variables; X ′X remains based on the
full X . So (X ′X)−1 is not the normal generalized inverse when X does not have
full column rank. The normal equation approach does not produce a meaningful
result in case of singularity.

See also
decldl, decqr, inverteps

Example
#include <oxstd.oxh>
main()
{

decl mx, my, cy = 2, ct = 50, ck = 3, mb, mxtx, mxtxi;
mx = ranu(ct,ck);
my = rann(ct,cy) / 10 + mx * ones(ck,1);

olsc(my, mx, &mb);
print(mb);
olsr(my’, mx’, &mb, &mxtxi, &mxtx);
print(mb, mxtx ~ mxtxi);

print((1/mx)*my, mx’mx ~ invert(mx’mx));
}

produces:
1.0992 0.98022
1.1068 0.95734
0.78966 1.0401

1.0992 1.1068 0.78966
0.98022 0.95734 1.0401

16.842 13.139 12.740 0.23380 -0.11726 -0.10967
13.139 15.095 11.872 -0.11726 0.24566 -0.098336
12.740 11.872 14.467 -0.10967 -0.098336 0.24639

1.0992 0.98022
1.1068 0.95734
0.78966 1.0401

16.842 13.139 12.740 0.23380 -0.11726 -0.10967
13.139 15.095 11.872 -0.11726 0.24566 -0.098336
12.740 11.872 14.467 -0.10967 -0.098336 0.24639

ones 179

ones
ones(const r, const c);

ones(const ma);
r in: int
c in: int
ma in: matrix

Return value
ones(r,c) returns an r by c matrix filled with ones.
ones(ma) returns a matrix of the same dimension as ma, filled with ones.

See also
constant, nans, unit, zeros

Example
#include <oxstd.oxh>
main()
{

print(ones(2, 2));
}

produces
1.0000 1.0000
1.0000 1.0000

outer
outer(const mx, const ms);

outer(const mx, const ms, const mode);
mx in: m× n matrix X
ms in: n× n symmetric matrix S or empty matrix
mode in: int, operation mode: ’d’ or ’o’ (optional argument)

Return value
outer(mx,ms) returns XSX ′ which is m×m.
outer(mx,<>) returns XX ′ which is m×m.
outer(mx,ms,’d’) returns diagonal(XSX ′) which is 1×m. For large matrices
this is much faster than using the diagonal function.
outer(mx,<>,’o’) returns

∑m
i=1 xix

′
i which is n × n, writing X ′ =

(x1, . . . , xm).
See also

diagonal
Example

#include <oxstd.oxh>
main()
{

decl x = rann(2,3), y = ranu(3,3), s = y’y;
print(outer(x, s, ’d’) | diagonal(outer(x, s))

| diagonal(x * s * x’));
}

produces
3.7646 4.2561
3.7646 4.2561
3.7646 4.2561

180 Chapter 8 Function reference

oxfilename
oxfilename(const itype);

oxfilename(const sname);

itype in: int, determines output format
sname in: string, file to search for in Ox folder tree

Return value
Returns a string with the name of the Ox source file from which it is called:

example 1 example 2
itype returns oxl D:\waste\func oxl func

0 full file name D:\waste\func.ox func.ox

1 path of file name D:\waste\

2 base name func func

3 file extension .ox .ox

In the first two cases the return value depends on how the program was started (the
path may not have been specified).
If the argument is a string, the Ox search is searched for this file, and the full path
name returned.

oxprintlevel 181

oxprintlevel
oxprintlevel(const ilevel);

ilevel in: int, print level, see below
No return value.
Description

Controls printing:
oxprintlevel(1); default: prints as normal,
oxprintlevel(0); switches printing off (print and println have no output),
oxprintlevel(2); disallows further calls to oxprintlevel,
oxprintlevel(-1); switches printing off, including warnings.

This function can be useful in simulations (e.g.), where the code being simulated
has no other mechanism for switching printing on and off (Modelbase derived code
normally uses SetPrint).

See also
oxwarning

Example
#include <oxstd.oxh>
test()
{

oxprintlevel(0); // output off
// do some simulations which otherwise have output
for (decl i = 0; i < 1000; ++i)

println("i=", i);
oxprintlevel(1); // output on
// do some simulations which has output and warning
oxprintlevel(-1); // output and warnings off
for (decl i = 0; i < 1000; ++i)

println("i=", i, " invert(0):", invert(0));
oxprintlevel(1); // output on
// do some simulations which have warnings
decl oldwarnings = oxwarning(0); // all warnings off
for (decl i = 0; i < 1000; ++i)

invert(0);
oxwarning(oldwarnings); // reset warning levels

}
main()
{

// comment the next line in to overrule oxprintlevel calls
// oxprintlevel(2);

test();
}

Prints nothing unless the oxprintlevel(2) statement is commented in.

182 Chapter 8 Function reference

oxrunerror
oxrunerror(const smsg);

oxrunerror(const smsg, const i01);

smsg in: string, error message text
i01 in: int, 0 (the default) or 1

No return value.
Description

Throws a runtime error. This error can be caught in a try-catch block (§13.7.6).
If the error is not caught, the specified message is printed with a call trace. Then the
program is exited.
If i01=1 and the error is caught, the error message will include the stack trace;
otherwise the caught error message excludes the trace.

oxversion
oxversion();

Return value
Returns an integer with the version of Ox multiplied by 100, e.g. 620 for Ox 6.2.

oxwarning
oxwarning(const smsg);

oxwarning(const flset);

smsg in: string, user-determined warning message
flset in: int, new warnings settings

Return value
Returns the previous warnings settings.

Description
When given a string as argument, the function will print a user-determined warn-
ing message. Otherwise, oxwarning controls the reporting of run-time warning
messages. The following types of messages are controlled by this function:

flag context
WFL DECFAILED decomposition failed and invertgen messages,
WFL ITMAX maximum no. of iterations reached,
WFL CONCAT concatenation dimensions don’t match,
WFL VECIDXMAT indexed a matrix as a vector,
WFL DETERMINANT determinant-related warning,
WFL USER user-determined warning message.

The first occurs when an inversion or decomposition fails, the second could happen
in an eigenvalue based function. The concatenation message is printed when the
dimensions don’t match, and the results has been padded with zeros. The message
related to WFL VECIDXMAT is given when a matrix which is not a row or column
vector is indexed with just one index. However, the message is not given when
using an empty single index [], which has the same effect as the vecr function.
You can add the flags together to specify warning settings. Use oxwarning(0) to
switch all messages off, and oxwarning(-1) to switch them all on.

oxwarning 183

See also
oxprintlevel (for an example)

184 Chapter 8 Function reference

peakc
peakc(const ma);

peakc(const ma);

ma in: T × n matrix A
Return value

Returns an T × n X with the majorized columns of A:

xtj = max
s=0,...,t

asj , t = 0, ..., T − 1.

periodogram 185

periodogram

periodogram(const ma);

periodogram(const ma, const itrunc, const cpoints,

const imode);

ma in: arithmetic type, T × n matrix
itrunc in: int, truncation parameter m, if ≤ 0,≥ T then T − 1 is used
cpoints in: int, no of points N at which to evaluate periodogram
imode in: 0: (truncated) periodogram (multiplied by T),

1: smoothed periodogram (multiplied by T) using Parzen
window,
2: estimated spectral density using Parzen window (as option
1, but divided by c0).

Return value

• periodogram(ma);

Returns T times the periodogram, evaluated at the Fourier frequencies
0, 2π/T, 4π/T, . . . , (int(T/2)2π)/T . The dimensions of the returned matrix
are int(T/2) + 1× n.

• periodogram(ma, itrunc, N, 0);

Returns a N × n matrix with (T times) the periodogram of the columns
of ma using autocovariances up to lag itrunc, computed at frequencies
0, π/(N − 1), 2π/(N − 1), . . . , π.

• periodogram(ma, itrunc, N, 1);

Returns a N × n matrix with (T times) the smoothed periodogram of the
columns of ma using autocovariances up to lag itrunc, computed at frequencies
0, π/(N − 1), 2π/(N − 1), . . . , π.

• periodogram(ma, itrunc, N, 2);

Returns a N × n matrix with the spectral density of the columns of
ma using autocorrelations up to lag itrunc, computed at frequencies
0, π/(N − 1), 2π/(N − 1), . . . , π.

Description
Computes the periodogram or spectral density of the columns of a T × n matrix
A = (a0, a1, . . . , an−1).
Define the autocovariance function of a T -vector x = (x0 · · ·xT−1)

′ up to lag k as
c = (ĉ0 · · · ĉk)′:

ĉj =
1
T

T−1∑
t=j

(xt − x̄)(xt−j − x̄), (8.3)

with the mean defined in the standard way as:

x̄ = 1
T

T−1∑
t=0

xt

Note that r̂j = ĉj/ĉ0, see equation (8.1) on page 70.

186 Chapter 8 Function reference

The sample periodogram is then defined as:

p̂ (ω) =
1

2π

T−1∑
j=−T+1

ĉ|j| cos (jω) =
ĉ0
2π

T−1∑
j=−T+1

r̂|j| cos (jω) , 0 ≤ ω ≤ π,

(8.4)
and the sample spectral density as:

ŝ (ω) =
1

2π

m∑
j=−m

K (j) r̂|j| cos (jω) , 0 ≤ ω ≤ π.

The K (·) function is called the lag window, m is called the lag truncation param-
eter.
The value of the imode parameter affects the computations as follows:
0: Computes Tp(ω).
1: Computes the smoothed periodogram T ĉ0ŝ(ω). The smoothing is achieved us-

ing the Parzen window:

K (j) = 1− 6
(
j
m

)2
+ 6

∣∣∣ jm ∣∣∣3 , ∣∣∣ jm ∣∣∣ ≤ 0.5,

= 2
(
1−

∣∣∣ jm ∣∣∣)3 , 0.5 ≤
∣∣∣ jm ∣∣∣ ≤ 1.0,

= 0,
∣∣∣ jm ∣∣∣ > 1.

2: Computes the estimated spectral density ŝ(ω) using the Parzen window.
We have that K(−j) = K(j), so that the sign of j does not matter. The cjs are
based on fewer observations as j increases. The window function attaches decreas-
ing weights to the autococorrelations, with zero weight for j > m. The larger m,
the less smooth the spectrum becomes, but the lower the bias. For more information
see Priestley (1981, Ch.6), Granger and Newbold (1986, §2.6) and Brockwell and
Davis (1991, §10.1).
In each case, when N = cpoints > 0, the periodogram is evaluated at N frequen-
cies between 0 and π:

0,
π

N − 1
,

2π

N − 1
, . . . ,

(N − 1)π

N − 1
= π,

so that the horizontal axis could be computed as:
M_PI * range(0, cpoints-1) / (cpoints-1)

When cpoints is 0 on input, or when the version with one argument is used, N =
int(T/2), and the periodogram is evaluated at:

0,
2π

T
,
4π

T
, . . . ,

2Nπ

T
,

so that the horizontal axis could be computed as:
M_2PI * range(0, int(ct/2)) / ct

See also
fft1d, DrawSpectrum (for another example).

periodogram 187

Example
#include <oxstd.oxh>
#include <oxfloat.oxh> // required for M_2PI

main()
{

decl ct = 2^3 + 7, x, y, yzt, p1, p2;

y = cumulate(rann(ct,1), 0.9);
p1 = periodogram(y) / ct;
x = M_2PI * range(0, int(ct/2))’ / ct;

yzt = (y - meanc(y))’;// FFT expects data in row
p2 = sqr(cabs(fft1d(yzt))’) / (ct * M_2PI);
print("%c", {"periodogram", "frequencies", "FFT"},

p1 ~ x ~ p2);
}

produces (the zeros at the end of the periodogram and frequencies are added in the
concatenation with fft):
periodogram frequencies FFT

0.00000 0.00000 1.1253e-033
0.49542 0.41888 0.49542
0.060270 0.83776 0.060270
0.024741 1.2566 0.024741
0.16432 1.6755 0.16432
0.036133 2.0944 0.036133
0.019385 2.5133 0.019385
0.023846 2.9322 0.023846
0.00000 0.00000 0.023846
0.00000 0.00000 0.019385
0.00000 0.00000 0.036133
0.00000 0.00000 0.16432
0.00000 0.00000 0.024741
0.00000 0.00000 0.060270
0.00000 0.00000 0.49542

188 Chapter 8 Function reference

polydiv
polydiv(const ma, const mb, const cp);

ma in: 1 ×m matrix A = (a0 . . . am−1) specifying the A polyno-
mial (see below)

mb in: 1×n matrix B = (b0 . . . bn−1) specifying the B polynomial
(see below)

cp in: int, required length, p, of polynomial resulting from division
Return value

Returns a 1 × p matrix with the coefficients of polynomial resulting from dividing
the A polynomial by the B polynomial. The integer 0 is returned when b0 is 0, or
p = 0.

Description
Defining the two polynomials

A(x) = a0 + a1x+ a2x
2 + . . . am−1x

m−1,
B(x) = b0 + b1x+ b2x

2 + . . . bn−1x
n−1,

polydiv returns (p is specified in the function call):

D(x) = A(x)/B(x) = d0 + d1x+ d2x
2 + . . . dp−1x

p−1.

See also
polyeval, polymake, polymul (for an example), polyroots

polyeval
polyeval(const ma, const mx);

ma in: 1 ×m matrix A = (a0 . . . am−1) specifying the A polyno-
mial (see below)

mx in: arithmetic type
Return value

Returns the polynomial evaluated at mx.
Description

Defining the polynomial

A(x) = a0 + a1x+ a2x
2 + . . . am−1x

m−1,

polyeval returns A(x).
See also

polydiv, polymake, polymul, polyroots
Example

#include <oxstd.oxh>
main()
{

decl a = <1,-0.8,-0.1>;

println("a(x)=a[0]+a[1]*x+a[2]*x^2; a(3)=", polyeval(a, 3));
}

produces
a(x)=a[0]+a[1]*x+a[2]*x^2; a(3)=-2.3

polygamma 189

polygamma
polygamma(const ma, const mn);

ma in: arithmetic type, argument
mn in: arithmetic type, order of derivative: 0 = first derivative, 1 =

second derivative, etc.
Return value

Returns the derivative of the logarithm of the complete gamma function at the value
of each element of ma, of double or matrix type. The second argument specifies the
order of the derivative.
Returns zero for derivative order less than 0 and -.Inf when the argument is zero
or a negative integer.
The return type is derived as follows:

returns ma order arguments
m× n matrix m× n matrix scalar (int)
m× n matrix scalar m× n matrix
m× n matrix m× n matrix m× n matrix
double scalar scalar (int)

Description
Computes the derivatives of the loggamma function at the argument a:

ψ(n)(a) =
dn+1

dan+1
log Γ(a) for a > 0.

Most commonly used are:
n = 0 digamma (psi) function
n = 1 trigamma function
n = 2 tetragamma function
n = . . . etc.

The function is accurate to about 15 significant digits (except for arguments very
close to a negative integer). The approximation uses the recurrence relation

ψ(n)(a+ 1) = ψ(n)(a) + (−1)nn!z−n−1.

to obtain an a value greater than 8.5; then an asymptotic formula with eight terms
is applied (see Abramowitz and Stegun, 1984, §6.4.11).

See also
loggamma

Example
#include <oxstd.oxh>
#include <oxfloat.oxh> // required for M_EULER

main()
{

print(polygamma(<0.5,1>, 0), -M_EULER - 2*log(2) ~ -M_EULER);
print("%12.7g", polygamma(0.5, <0,1,2,3>));

}

produces
-1.9635 -0.57722
-1.9635 -0.57722
-1.96351 4.934802 -16.8288 97.40909

190 Chapter 8 Function reference

polymake
polymake(const roots);

roots in: 2×mmatrix with (inverse) roots of the polynomial, first row
is real part, second row imaginary part (or 1×m matrix if all
roots are real).

Return value
Returns the coefficients of the polynomial (a0 = 1) as a 2 × (m + 1) matrix if the
roots had a complex part, else 1× (m+ 1).

Description
Computes the polynomial coefficients from the inverse roots. The constant term
(a0) is set to one, so returned is the ai from:

1 + a1x+ a2x
2 + . . . amx

m.

See also
polyroots (for an example)

polymul 191

polymul
polymul(const ma, const mb);

ma in: 1×m matrix A = (a0 . . . am−1) with the A polynomial
mb in: 1×n matrix B = (b0 . . . bn−1) specifying the B polynomial

Return value
Returns a 1×m+n−1 matrix with the coefficients of the product of the polynomials.

Description
Defining the two polynomials

A(x) = a0 + a1x+ a2x
2 + . . . am−1x

m−1,
B(x) = b0 + b1x+ b2x

2 + . . . bn−1x
n−1,

the polymul function returns:

C(x) = A(x)B(x) = c0 + c1x+ c2x
2 + . . . cp−1x

p−1, p = m+ n− 2.

The coefficients ci correspond to the convolution of the coeficients ai and bi:

ci =

min(i,m−1)∑
j=max(0,i−n+1)

ajbi−j , i = 0, . . . , p− 2.

The polymul function computes the sum directly. For large polynomials, faster
computation can be based on the fast Fourier transform, as the example shows.

See also
fft1d, polydiv, polyeval, polymake, polyroots

Example
#include <oxstd.oxh>
main()
{

decl a, b, c, ff;
format("%10.4f");

a = <1,-0.9>; b = <1,-0.8,-0.1>;

print(polymul(a, b));
c = polymul(b, a);
print(polydiv(c, a, 5));

// multiply the two FFTs, padded with zeros
ff = cmul(fft(a~zeros(b)), fft(b~zeros(a)));
ff = fft(ff, 2); // apply inverse real FFT
print(ff[][:columns(a)+columns(b)-2]);

// divide the two FFTs, padded with zeros
ff = cdiv(fft(c~zeros(a)), fft(a~zeros(c)));
ff = fft(ff, 2); // apply inverse real FFT
print(ff[][:4]);

}

produces
1.0000 -1.7000 0.6200 0.0900
1.0000 -0.8000 -0.1000 -0.0000 -0.0000
1.0000 -1.7000 0.6200 0.0900
1.0000 -0.8000 -0.1000 0.0000 0.0000

192 Chapter 8 Function reference

polyroots
polyroots(const ma, const amroots);

ma in: 1× (m+ 1) matrix A = (a0 . . . am) specifying the polyno-
mial of order m (see below)

amroots in: address of variable
out: 2 ×m matrix with roots of the polynomial, first row is real

part, second row imaginary part (all zeros if the roots are
real). The roots are not sorted.

Return value
Returns the result of the eigenvalue decomposition:

0 no error;
1 maximum no of iterations (50) reached.

Description
Computes the inverse roots of a polynomial

a0 + a1x+ a2x
2 + . . . amx

m.

The inverse roots are found as the eigenvalues of the companion matrix (which is
already in upper Hessenberg form), e.g. when m = 4 and a0 = 1:

−a1 −a2 −a3 −a4
1 0 0 0
0 1 0 0
0 0 1 0

Note that it is assumed that a0 ̸= 0. Also note that the inverse roots of 1 + a1x +
a2x

2 + . . . amx
m, correspond to the roots of xm + a1x

m−1 + a2x
m−2 + . . . a1.

Error and warning messages
polyroots(): maximum no. of iterations reached

See also
cabs (for another example), eigen, polydiv, polyeval, polymake, polymul

Example
#include <oxstd.oxh>
main()
{

decl v1 = <-1, 1.2274, -0.017197, -0.28369, -0.01028>, roots;

polyroots(v1, &roots);
print(v1, "roots", roots, "inverse roots", cdiv(ones(roots),roots),

"polynomial", polymake(roots));
}

-1.0000 1.2274 -0.017197 -0.28369 -0.010280
roots

0.82865 0.82865 -0.39337 -0.036535
0.16923 -0.16923 0.00000 0.00000

inverse roots
1.1585 1.1585 -2.5422 -27.371

-0.23659 0.23659 0.00000 0.00000
polynomial

1.0000 -1.2274 0.017197 0.28369 0.010280
0.00000 0.00000 0.00000 0.00000 0.00000

pow 193

pow
pow(const ma, const p);

ma in: arithmetic type
p in: arithmetic type, power

Return value
Returns ma .^ p. This is identical to using the dot-power operator, with the excep-
tion that if both ma and p are an integer, the return type is a double.

See also
sqr (for an example), ^ .^ (§13.8.3)

print, println
print(const a, ...);

println(const a, ...);

a in: any type
. . . in: any type

Return value
Returns the number of arguments supplied to the function.

Description
Each argument is printed to stdout using default formatting. A formatting string
can be input in the input stream: a formatting string starts with a % symbol, and is
followed by one or more characters. If a formatting string is encountered, it is not
printed, but applied to the next argument.
There is an additional option to add column and row labels for a matrix, specify a
different format for each matrix column, or only print the lower diagonal:
%r the next argument contains row labels (array of strings)
%c the next argument contains column labels (array of strings)
%cf the next argument contains column formats (array of strings)
%lwr only print the lower diagonal of the matrix

The default format strings are:
no value "null"

int "%d"

double "%g"

matrix "\n", then each element "%#13.5g", 6 elements on a
line (5 if row is labelled), no labels.

string "%s"

array "&0x%p"

function "&%d"

class "&0x%p"

library function "&0x%p"

The format function may be used to set a different default format; it also lists the
format options.

194 Chapter 8 Function reference

The format specification is similar to that for the printf function of the C language:

%[flag][width][.precision]type

The optional flag arguments are listed in Table 8.2. The optional width argument
specifies the width of the output field. The optional precision argument specifies the
number of significant digits (for type gG) or the number of digits after the decimal
point (type eEf); the default is 6 if precision is absent. The possible values for type
are listed in Table 8.3.

Table 8.2 Formatting flags for doubles and integers

flag
- left adjust in output field,
+ always print a sign,
space prefix space if first character is not a sign
0 pad with leading zeros,
alternate output form:

type is o: first digit will be 0,
type is xX: prefix with 0x or 0X (unless value is 0),
type is eEfFgG: always print decimal point,
type is gG: keep trailing zeros,
type is mM: omit dimensions,
type is v: omit outer { } when printing array,
type is P: go upto three stars.

Table 8.3 explains the format strings; some notes:
• Be careful with the %f format, for example, when printing 1e-300, the output

field will need 302 characters.
• By default, integers are printed without leading spaces, to use a space as sepa-

rator: " %d" alternatively specify a wider field: "%6d".
• Matrices always use one space between elements.
• The "%m" and "%M" formats must be followed by a matrix. First the number

of rows and columns is written, which is followed by the matrix, row by row;
this corresponds to the format used by savemat. The dimensions are omitted
by "%#m" and "%#M".
This format is most useful when the matrix has to be read from a file at a later
stage.

• The "%C" format prints date and/or time. If there is no fraction the calendar date
is printed as yyyy-mm-dd; if there is only a fraction the time is printed as hh:mm
or hh:mm:ss or hh:mm:ss.hh. If both are present yyyy-mm-ddThh:mm[:ss[.hh]]
is printed (so using the ISO standard for date/time formatting). Also see
dayofcalendar.

• The "%w.pP" format prints a p-value with the specified width and precision.
If width w is greater than 7, printed is: [% w − 5.pf]***, with "***" for p-
value < 0.001, "** " for p-value < 0.01, "* " for p-value < 0.05, and " "

otherwise.

print 195

Table 8.3 Formatting types for printing

double type: (also used for matrices)
g,G %e or %E if the exponent is < −4

or >= precision; else use %f,
e,E scientific notation: with exponent,
f,F print in fixed-point notation, without exponent,
g,e,f prints .NaN as .NaN,
G,E,F prints .NaN as .,
C print as a calendar date
P print as a p-value, e.g. [0.002]**

** if p-value ¡ 0.01, * if ¡ 0.05 (with # *** for pvalue ¡ 0.001)
T print as a t-value, e.g. { 12.1}
specials for matrices:
r followed by row labels (array of strings),
c followed by column labels (array of strings),
cf followed by column formats (array of strings), e.g.

print("%c",{"a","b"},"%cf",{"%8.4g","%6.2g"},m);

rs followed by row separator (string),
(also suppresses leading and trailing newline),

cs followed by column separator (string),
integer type:
d,i signed decimal notation,
o unsigned octal notation,
x,X unsigned hexadecimal notation,
u unsigned decimal notation,
c print as a single character (i.e. one byte),
string type:
s string format,
matrix type:
m print matrix row by row using %25.26e,
M print matrix row by row using default format,
any type:
v any variable in Ox constant format.

If the width w is 7 or less, only the stars are printed; with width up to 2, the star
text has only two characters.

• The "%v" format prints a variable in the format of an Ox constant, and can be
used for any variable. It can be especially useful to read and write variables that
consist of derived types, such as an array or a class object, but also for a matrix.
An example is given below and in ox/samples/inout/percent v.ox.

• An array is printed one element per line, prefixed with the index. E.g.
println({"A"}) prints [0] = A. Use ”
There is no specific array type. However, if a type is used before an array,
the array is printed as a table (like a matrix), and the format is applied to the

196 Chapter 8 Function reference

elements for which it is valid. In that case row/column headers/separators can
also be used.

The println function is as print but ensures the next output will be on a new line.

To print text starting with a percentage symbol that is also a format specifier, use
either %s as the format, or a double percentage, as in println("%s", "%GDP", "

or: ", "%%GDP").
See also

eprint, format, fprint, fscan, fwrite, sprint
Example

#include <oxstd.oxh>
main()
{

print("%r", {"row 1", "row 2"},
"%c", {"col 1", "col 2"}, "%6.1g", unit(2));

decl xp = 9*rann(2,1)~ranu(2,1);
print("%c", {"x ", "p "},

"%cf",{"%8.4g", " [%4.2f]"}, xp);

decl x = rann(10,2);
print("\nLower diagonal:", "%lwr", x’x);

decl arr = {{"AAA",10.1,1/3},"\\hline",{"XAAA",12.1}};
println("array: ", "%v", arr);
print("\n\\begin{tabular}{ccc}");
println("%cs", "&", "%rs", "\\\\\n", "%10.2f", arr);
println("\\end{tabular}");

}

produces
col 1 col 2

row 1 1 0
row 2 0 1

x p
2.024 [0.42]
15.66 [0.16]

Lower diagonal:
10.585
3.1110 7.1178

array:{{"AAA",10.1,0.3333333333333333},"\\hline",{"XAAA",12.1}}

\begin{tabular}{ccc}
AAA& 10.10& 0.33\\
\hline
XAAA& 12.10\\
\end{tabular}

In the second example we show the output from the "%v" format.
#include <oxstd.oxh>

class VClass
{

print 197

decl m_mMatrix;
decl m_aArray;
VClass();

}
VClass::VClass()
{

m_mMatrix = range(1,3);
m_aArray = {"a", "b", "c"};

}
main()
{

decl vc = new VClass();
print("\nobject using %v:\n", "%v", vc);

}

produces
object using %v:
::VClass
{
.m_mMatrix = <1,2,3>;
.m_aArray = {"a","b","c"};
}

198 Chapter 8 Function reference

probchi, probf, probn, probt
probchi(const ma, const df);

probchi(const ma, const df, const nc);

probf(const ma, const df1, const df2);

probf(const ma, const df1, const df2, const nc);

probn(const ma);

probt(const ma, const df);

probt(const ma, const df, const nc);

ma in: arithmetic type
df in: arithmetic type, degrees of freedom
df1 in: arithmetic type, degrees of freedom in the numerator
df2 in: arithmetic type, degrees of freedom in the denominator
nc in: arithmetic type, non-centrality parameter

Return value
Returns the requested probabilities at ma (between zero and one):
probchi probabilities from χ2(df) distribution,
probchi probabilities from non-central χ2(df) distribution,
probf probabilities from F(df1, df2) distribution,
probf probabilities from non-central F(df1, df2) distribution,
probn one-sided probabilities from the standard normal N(0, 1),
probt one-sided probabilities from student-t(df) distribution,
probt one-sided probabilities from non-central student-t(df) distribution.

The normal probabilities are accurate to 14-15 significant digits for probabilities
> 10−20. The other probabilities are accurate to at least 10 digits.
The return type is derived as follows:

returns ma degrees of freedom arguments
m× n matrix m× n matrix scalar
m× n matrix scalar m× n matrix
m× n matrix m× n matrix m× n matrix
double scalar scalar

Description

Sources: probchi uses gammafunc and Applied Statistics algorithm AS 275 (Mar-
dia and Zemroch, 1975, and a modified version of Ding, 1992) for the non-central
distribution; probf uses betafunc, probn and tailn use Ooura (1998) and AS
66 (Hill, 1973), probt uses AS 3 (Cooper, 1968) for two arguments and integer
degrees of freedom, and a modification of AS 243 (Lenth, 1989 otherwise. The
non-central F is based on a modified version of AS 266 (Lenth, 1987).

See also
dens..., quan..., tail..., Probability package (§11.3) for probbvn, probmvn

Example
#include <oxstd.oxh>
main()
{

probchi 199

decl m = <0,4.61,5.99>;

print("%r", {"chi: "}, probchi(m, 2));
print("%r", {"normal:"}, probn(<-1.96, 0, 1.96>));
print("%r", {"t: "}, probt(<-1.96, 0, 1.96>, 4));

/* additional argument types: */
print("%r", {"chi: "}, probchi(5.99, <2,3,4>),

"%r", {"chi: "}, probchi(<6,7,8>, <2,3,4>));
print("%r", {"nc chi:"}, probchi(m, 2, 5));
print("%r", {"nc t: "}, probt(<-1.96, 0, 1.96>, 4, 5));

}

produces
chi: 0.00000 0.90024 0.94996
normal: 0.024998 0.50000 0.97500
t: 0.060777 0.50000 0.93922
chi: 0.94996 0.88790 0.80010
chi: 0.95021 0.92810 0.90842
nc chi: 0.00000 0.37210 0.49621
nc t: 7.3581e-010 2.8665e-007 0.0052148

200 Chapter 8 Function reference

prodc, prodr
prodc(const ma);

prodr(const ma);

ma in: T × n matrix A
Return value

The prodc function returns a 1 × n matrix which holds the product of all column
elements of ma.
The prodr function returns a T × 1 matrix which holds the product of all row
elements of ma.

See also
sumc, sumr

Example
#include <oxstd.oxh>
main()
{

print(prodc(<0:3;1:4;2:5>));
print(prodr(<0:3;1:4;2:5>));

}

produces
0.00000 6.0000 24.000 60.000

0.00000
24.000
120.00

quanchi 201

quanchi, quanf, quann, quant
quanchi(const ma, const df);

quanf(const ma, const df1, const df2);

quann(const ma);

quant(const ma, const df);

ma in: arithmetic type, probabilities: must be between 0 and 1
df in: arithmetic type, degrees of freedom
df1 in: arithmetic type, degrees of freedom in the numerator
df2 in: arithmetic type, degrees of freedom in the denominator

Return value
Returns the requested quantiles (inverse pdf; percentage points) at ma:
quanchi quantiles from χ2(df) distribution
quanf quantiles from F(df1, df2) distribution
quann standard normal quantiles
quant quantiles from student-t(df) with integer degrees of freedom

The quantiles are accurate to about 10 digits. The return type is derived as follows:
returns ma degrees of freedom arguments
m× n matrix m× n matrix scalar
m× n matrix scalar m× n matrix
m× n matrix m× n matrix m× n matrix
double scalar scalar)

Description
Sources: quanchi uses a modified version of Applied Statistics algorithm AS 91
(Best and Roberts, 1975) and AS R85 (Shea, 1991), quanf uses AS 109 (Cran, Mar-
tin, and Thomas, 1977) and AS 64 (Majunder and Bhattacharjee, 1973) to obtain
starting values for a Newton Raphson refinement (it does not use the iterative pro-
cedure from AS 109 because it is not accurate enough; AS R83 (Berry, Mielke Jr,
and Cran, 1977) does not seem to solve this), quann uses AS 241 (Wichura, 1988),
quant is based on Hill (1981), using Newton Raphson for refinement.

See also
dens..., prob..., tail..., lib/Quantile.ox (to compute quantiles of other
distributions), Probability package (§11.3)

Example
#include <oxstd.oxh>
main()
{ decl t = range(1,10), tt = (t - 5) / 5;

print("%14.10g", probf(t,10,10)’ ~ quanf(probf(t,10,10),10,10)’
~ probt(tt,2)’ ~ quant(probt(tt,2),2)’);

}
0.5 1 0.253817018 -0.8

0.855154194 2 0.3047166335 -0.6
0.9510726929 3 0.3639172365 -0.4

0.98041856 4 0.4299859958 -0.2
0.9910499384 5 0.5 0
0.9954702686 6 0.5700140042 0.2
0.9975177199 7 0.6360827635 0.4
0.9985507194 8 0.6952833665 0.6

0.99910908 9 0.746182982 0.8
0.9994284475 10 0.7886751346 1

202 Chapter 8 Function reference

quantilec, quantiler
quantilec(const ma);

quantiler(const ma);

quantilec(const ma, const mq);

quantiler(const ma, const mq);

ma in: T × n matrix A
mq in: (optional argument) 1× q matrix of quantiles

Return value
The quantilec function returns a q × n matrix holding the requested quantiles of
the columns of ma. If no second argument is used the return value is a 1× n matrix
holding the medians.
The quantiler function returns a T × q matrix holding the requested quantiles of
the rows of ma. If no second argument is used the return value is a T × 1 matrix
holding the medians.
Missing values in A are ignored; if A only has missing values the quantiles will be
missing values.

Description
The q-th quantile ξq, 0 ≤ q ≤ 1, of a random variable X is defined as the smallest
ξ which satisfies P(X ≤ ξ) = q. So ξ0.5, the median, divides the distribution in
half.
For a sample of size T , x = (x0 · · ·xT−1)

′, the q-th quantile is found by in-
terpolating the nearest two values. Write (y0 · · · yT−1) for the ordered x-values,
y0 ≤ y1 ≤ · · · ≤ yT−1, the quantiles are computed as:

ξq = [k + 1− q (T − 1)] yk + [q (T − 1)− k] yk+1, (8.5)

where
k = int[q (T − 1)].

when q(T − 1) is integer, the expression simplifies to ξq = yk.
For example, for the quartiles (ξ0.25, ξ0.5 and ξ0.75) when T = 4: q(T − 1) =
0.75, 1.5, 2.25 and k = 0, 1, 2 respectively. In this case, the median is the average
of the middle two observations: ξ.5 = 0.5y1 +0.5y2, and the lower quartile: ξ.25 =
0.25y0 + 0.75y1.
The example below shows how to obtain quantiles without using interpolation.

See also
meanc, meanr, varc, varr

Example
#include <oxstd.oxh>
main()
{

print(quantilec(<3;2;1;4>, <1/4,2/4,3/4>));
print(quantilec(<3;2;1;4>));

decl m = rann(2,10000); /* generate m */

print(quantiler(m, <0.8,0.9,0.95,0.975>));
print(quantilec(m’, <0.8,0.9,0.95,0.975>));

quantilec 203

m = sortr(m); /* sort m */
print(m[][columns(m) * <0.8,0.9,0.95,0.975>]);

}

produces:
1.7500
2.5000
3.2500

2.5000

0.83516 1.2728 1.6457 1.9635
0.84842 1.2740 1.6248 1.9570

0.83516 0.84842
1.2728 1.2740
1.6457 1.6248
1.9635 1.9570

0.83536 1.2734 1.6459 1.9638
0.84871 1.2744 1.6255 1.9585

204 Chapter 8 Function reference

range
range(const min, const max);

range(const min, const max, const step);

range(const min, const max, const stype);

range(const min, const max, const step, const stype);

min in: int or double, first value m
max in: int or double, last value n
step in: int or double, (optional argument) increment
stype in: string, (optional argument) "a" to get return value as array

of values, "s" to get return value as array of strings
Return value

Returns a 1 × (n −m + 1) matrix (array if stype is "s" or "a") with the values
with values m, m + 1, . . . , n. If n < m, range returns a 1 × (m − n + 1) matrix
with the values with values m, m− 1, . . . , n.
The version which uses the step argument uses that as the incrementor (rather than
the default +1 or −1), the returned matrix is a row vector of the required length.

Description
When all arguments are integers, the incrementation arithmetic is done using inte-
gers, else using doubles. Integer arithmetic could be a bit more precise when using
longer ranges. The following example illustrates the difference:

range(-1.1, 1.1, 0.11);
range(-110, 110, 11) / 100;

The first line has the loop using floating point arithmetic, and will not have exactly
zero, but something like -1.9e-16 as its 11th element. In the second line, the loop is
incremented in integer arithmetic before conversion to floating point numbers. Here
the 11th number will be exactly zero. Because if these rounding errors, it is best to
use the integer version, and scale afterwards.

See also
constant

Example
#include <oxstd.oxh>
main()
{

print(range(1,4), range(4,1), range(1,6,2));
print(range(1.2,4), range(1,6,2.1));

}

produces
1.0000 2.0000 3.0000 4.0000
4.0000 3.0000 2.0000 1.0000
1.0000 3.0000 5.0000
1.2000 2.2000 3.2000
1.0000 3.1000 5.2000

ranloopseed 205

ranloopseed
ranloopseed(const iloop, const istage);

iloop in: int, loop counter (if istage = 0)
istage in: int, -1: initialization, 0: iterating, 1: exiting

No return value.
Description

Colours the current seed with the loop iterator, so that parallel loops have the same
random number stream independently of how they are partitioned among threads or
processes. This is automatically done inside Ox for parallel for and foreach loops.
Note that nested calls to ranloopseed are ignored, as are calls inside a parallel loop.

See also
§4.8.

rank
rank(const ma);

rank(const ma, const eps);

ma in: arithmetic type
eps in: arithmetic type, optional tolerance

Return value
Returns the rank of a matrix, of type int. The rank of a scalar is 1, except for the
rank of zero, which is zero.

Description
Computes the rank of a matrix A. The rank is the number of singular values >
10ϵinv||A||∞, with ϵinv is set by the inverteps function (the default is the machine
precision for doubles times 1000 ≈ 2× 10−13) and

||A||∞ = max
0≤i<m

n−1∑
j=0

|aij |.

Note that, by default, the rank is relative to the norm, so that, for example, the rank
of <1e-200> is 1.
When the two argument version is used, the rank is computed as the number of
singular values > eps.

See also
decsvd, inverteps, norm

Example
#include <oxstd.oxh>
main()
{

print(rank(<1,0;1,0>), " ");
print(rank(<1e-200>), " ");
print(rank(0), " ");
print(rank(<1e-200>, inverteps(0)));

}

produces: 1 1 0 0

206 Chapter 8 Function reference

rann
rann(const r, const c);

r in: int, number of rows
c in: int, number of columns

Return value
Returns a r × c matrix of random numbers from the standard normal distribution.
The matrix is filled by row. Note that, if both r and c are 1, the return value is a
scalar of type double.

Description
The rann function generates pseudo-random draws from the standard normal dis-
tribution. This uses uniform random numbers as described under ranu.
Using ranseed("MWC 52") (the default uniform generator) or ranseed

("MWC 32") will generate standard normal samples using the ziggurat method
(Doornik, 2005), while the others use the polar-Marsaglia method. In the polar
method, the draws are generated in pairs. As a consequence, the seed may be one
state further advanced than expected.

See also
ranseed, ranu, Probability package (§11.3),

Example
#include <oxstd.oxh>
main()
{

print(sumc(rann(1000,1)) / 1000);

ranseed(-1);
print(rann(1,5));
ranseed(-1);
print(rann(1,3) ~ rann(1,2));

}

produces
-0.035817

0.22489 1.7400 -0.20426 -0.91760 -0.67417
0.22489 1.7400 -0.20426 -0.91760 -0.67417

ranseed 207

ranseed
ranseed(const iseed);

iseed in: int (1 seed), or array of ints (multiple seeds), or
in: string, name of random number generator to use.

Return value
Returns the current seed(s) of the random number generator. If the generator only
uses one seed, the return type is int. Otherwise it is an array holding all the seeds
(all array elements are integers).
A call to ranseed(0) only returns the current seed, without changing it;
ranseed(-1) resets to the initial seed and returns the initial seed.
A call with a string argument to set the RNG returns the name of the new RNG. Use
ranseed("") to get the name of the current RNG without changing it.

Description
Sets and gets the seed(s); ranseed can also change the random number generator
(see under ranu for more information). Some examples are:

ranseed(0) just returns the seed(s)
ranseed(-1) resets the initial seed(s)
ranseed(111) sets seed to 111

ranseed(111, 1111) sets two seeds (e.g. for two seed rng, ”GE”)
ranseed("MWC 52") MWC822 52 generator (the default generator)
ranseed("PM") Park & Miller generator (the Ox 3 default)
ranseed("GM") George Marsaglia’s generator
ranseed("LE") Pierre L’Ecuyer’s generator

The seed is not set according to the date and time. Ox always uses a fixed seed, so
that statistical results can be replicated on the next run. Thus, in many cases it is not
necessary to set the seed explicitly. To set the seed according to the current time use
ranseed(today()).
Note that each generator has its own set of seeds. When using L’Ecuyer, the four
seeds must be (> 1, > 7, > 15, > 127), otherwise the call is ignored.
Note that the ranseed("MWC 32") and ranseed("MWC 52") generators have 256
seeds and a state and carry, so ranseed(0) returns a vector with 258 elements. It
is possible to set the seed with one element, for example ranseed(111). In that
case 111 is used as a starting point for a procedure that generates 256 seeds, and the
default state and carry are used. For other RNGs which use more than one seed, if
only one seed is set then all seeds are set to this value.

See also
ran..., ranu

Example
#include <oxstd.oxh>
main()
{

decl seed = ranseed(0);
print("RNG=", ranseed(""), " initial seeds: ",

seed[0], " ... ", seed[sizeof(seed) - 1]);
print(meanc(rann(10000,2)) | meanc(rann(10000,2)));
seed = ranseed(0);

208 Chapter 8 Function reference

print("current seed: ",
seed[0], " ... ", seed[sizeof(seed) - 1]);

ranseed(-1);
print(meanc(rann(10000,2)));

ranseed("GM");
print("RNG=", ranseed(""), " initial seed: ", ranseed(0));
print(meanc(rann(10000,2)) | meanc(rann(10000,2)));
ranseed(-1);
print(meanc(rann(10000,2)));

}

produces
RNG=MWC_52 initial seeds: 1013904223 ... 362436

0.0011722 -0.0070313
-0.0024659 -0.0065795

current seed: 866497328 ... 759508397
0.0011722 -0.0070313

RNG=GM initial seed:
[0] = 362436069
[1] = 521288629

-0.0046842 0.015912
0.0037562 0.017064

-0.0046842 0.015912

ranu 209

ranu
ranu(const r, const c);

r in: int
c in: int

Return value
Returns a r × c matrix of uniform random numbers. The matrix is filled by row.
When both r and c are 1, the return value is a scalar of type double.

Description
Generates random numbers uniformly distributed in the range 0 to 1. Each call
to ranu will produce a different set of numbers, unless the seed is reset (this is
achieved through the ranseed function). There is a choice between five random
number generators (made using ranseed). The following two tables list the origin
and properties of the (pseudo) random number generators (see Doornik, 2006 for a
more detailed discussion):

code name reference
"PM" LCG31 modified version of Park and Miller (1988)

(this was the Ox 1–3 default)
"GM" MWC60 Marsaglia (1997)
"LE" LFSR113 L’Ecuyer (1999)
"MWC 32" MWC8222 Marsaglia (2003)
"MWC 52" MWC8222 52 Marsaglia (2003) and Doornik (2007)
"default" Set the default generator, same as "MWC 52".

code period seeds speed
"PM" 231 − 1 ≈ 2× 109 1 0.8
"GM" ≈ 0.6× 260 ≈ 7× 1017 2 0.9
"LE" ≈ 2113 ≈ 4× 1034 4 1.1
"MWC 32" ≈ 28222 ≈ 102475 256 0.8
"MWC 52" ≈ 28221 ≈ 102475 256 1

The default "MWC 52" generates a random number that makes full use of the avail-
able floating point precision (this carries over to all other random number functions).
The others only use 32 bits (instead of 52).
The relative speed ratio is only a rough indicator (and will be platform specific). All
random number generators for the non-uniform distributions use the active uniform
generator as input. A C-code listing of the generators is given in the Ox Appendices.

See also
ran..., ranseed

Example
#include <oxstd.oxh>
main()
{

print(ranu(2,3));
}

produces
0.56444 0.76994 0.41641
0.15881 0.098209 0.37477

210 Chapter 8 Function reference

reflect
reflect(const ma);

ma in: square m×m matrix
Return value

Returns the reflected version of ma.
Description

Reflects a matrix around its secondary diagonal (from element m− 1, 0 to element
0,m− 1). A matrix which is unchanged under reflection is called persymmetric.

See also
transpose operator ’

Example
#include <oxstd.oxh>
main()
{

print(reflect(<2,1;1,4>));
}

produces
4.0000 1.0000
1.0000 2.0000

replace 211

replace
replace(const where, const what, const with);

replace(const where, const what, const with, const smode);

where in: object to replace in
what in: what to search for
with in: the replacement
smode in (optional argument), string controlling replace method

Return value
Returns where, with the requested replacements made (if any).

Description
where what with action
array string string replace string elements equal where

with with

array string string apply the replace action on each string
element

string string string replace one or more occurrences of
substring what

arithmetic int,double int,double replace every element that occurs in
what

arithmetic matrix int,double replace every element that occurs in
what

arithmetic matrix matrix replace every element that occurs in
what with the corresponding element
in with

array arithmetic arithmetic apply the replace action on each arith-
metic element

Arithmetic denotes a matrix, int, or double.
For string replacement, smode is an optional string consisting of the letters:
"i" ignore case,
"*" replace all,
"a" replace all,
"^" replace if string matches at start,
"$" replace if string matches at end,
"." dot-replacement: apply the string replacement to

every string in the array (instead of replacing en-
tire strings only),

"1" – "9" perform from one to nine replacements,
"join" join string array elements of where, inserting

string with,
"split" split string into array of strings by string what.

The default is "*".
The smode argument is ignored for arithmetic replacement.

See also
find, vecindex

212 Chapter 8 Function reference

Example
#include <oxstd.oxh>

main()
{

decl sarr = {"Aa", "BbAaAa", "Aa", "Cc"};

println(replace("aAaAbBaAa", "bB", "xx"));
println(replace("aAaAbBaAa", "bB", ""));
println(replace("aAaAbBaAa", "aAa", "1zzz"));
println(replace("aAaAbBaAa", "AAA", "1zzz", "i"));
println("%v", replace(sarr, "AA", "1zzz", "i1"));
println("%v", replace(sarr, "AA", "1zzz", "i.1"));
println("%v", replace(unit(3), <1,0>, <2,5>));
println(unit(3) .== 0 .? 5 .: 2);
println("%v", replace(unit(3), 0, 2));
println("%v", replace({0,1,2,0}, 0, 2));

sarr = {"","aa","ab","a","","dd"};
decl s = replace(sarr, "", "|", "join");
println("original array: ", "%v", sarr);
println("joined: ", s);
println("split: ", "%v", replace(s, "|", "", "split"));

println("replace empty: ", "%v", replace(sarr, "", "A"));
println("replace if starts with a: ", "%v", replace(sarr, "a", "A", "^"));
println("replace each starting a: ", "%v", replace(sarr, "a", "A", ".^"));
println("add to each start: ", "%v", replace(sarr, "", "Z", ".^"));

}

produces:
aAaAxxaAa
aAaAaAa
1zzzAbB1zzz
1zzzAbB1zzz
{"1zzz","BbAaAa","Aa","Cc"}
{"1zzz","Bb1zzzAa","1zzz","Cc"}
<2,5,5;5,2,5;5,5,2>

2.0000 5.0000 5.0000
5.0000 2.0000 5.0000
5.0000 5.0000 2.0000

<1,2,2;2,1,2;2,2,1>
{2,1,2,2}
original array: {"","aa","ab","a","","dd"}
joined: |aa|ab|a||dd
split: {"","aa","ab","a","","dd"}
replace empty: {"A","aa","ab","a","A","dd"}
replace if starts with a: {"","A","A","A","","dd"}
replace each starting a: {"","Aa","Ab","A","","dd"}
add to each start: {"Z","Za","Zb","Z","Z","Zd"}

reshape 213

reshape
reshape(const ma, const r, const c);

ma in: arithmetic type
r in: int
c in: int

Return value
Returns an r × c matrix, filled by row from vecr(ma). If there are less than rc

elements in ma, the input matrix is repeated.
Description

Reshapes a matrix. It runs through the rows of ma from top to bottom. When all the
elements of ma are used, the function starts again at the begining of ma.

See also
shape, vecr

Example
#include <oxstd.oxh>
main()
{

print(reshape(<1:3>, 4, 3)’);
}

1.0000 1.0000 1.0000 1.0000
2.0000 2.0000 2.0000 2.0000
3.0000 3.0000 3.0000 3.0000

reversec, reverser
reversec(const ma);

reverser(const ma);

ma in: m× n matrix A
Return value

The reversec function returns an m × n matrix which is ma, except that the ele-
ments within each column are in reverse order.
The reverser function returns an m × n matrix which is ma, except that the ele-
ments within each row are in reverse order.

See also
sortc, sortr

Example
#include <oxstd.oxh>
main()
{

decl m = <0:3;4:7;8:11;12:15>;
print(reversec(m), reverser(m));

}
12.000 13.000 14.000 15.000
8.0000 9.0000 10.000 11.000
4.0000 5.0000 6.0000 7.0000
0.00000 1.0000 2.0000 3.0000

3.0000 2.0000 1.0000 0.00000
7.0000 6.0000 5.0000 4.0000
11.000 10.000 9.0000 8.0000
15.000 14.000 13.000 12.000

214 Chapter 8 Function reference

round
round(const ma);

ma in: arithmetic type
Return value

Returns the rounded elements of ma, of double or matrix type. Rounds to the nearest
integer.

See also
ceil (for an example), floor, trunc

rows
rows(const ma);

ma in: any type
Return value

Returns an integer value which is the number of rows in the argument:

type returns
m× n matrix m
string number of characters in the string
array number of elements in the array
file number of rows in the file

(only if opened with f format, see fopen)
other 0

Description
Computes the number of rows in the argument.

See also
columns (for an example), sizec (for an example), sizeof, sizer, sizerc

savemat 215

savemat

savemat(const sname, const ma);

savemat(const sname, const ma, const iFormat);

savemat(const sname, const ma, const asVarNames);

sname in: string containing a destination file name (with
extension)

ma in: matrix
iFormat in: (optional argument)

1: omit the matrix dimensions (.mat file only)
1: save in universal v96 format (.fmt file only)

asVarNames in: (optional argument)
array of strings with names for data columns

Return value
Returns 0 if the operation failed, 1 otherwise.

Description
The type of file saved depends on the extension of the file name:

.mat matrix file (text file), described below,

.dat data file (text file) with load information,

.oxdata OxMetrics data file (.in7,.bn7 zipped together),

.in7 PcGive 7 data file (with corresponding .bn7 file),

.xlsx Excel 2007 (or newer) workbook file (Office Open xml),

.zip csv file (zipped),

.dta Stata data file (version 4–6 or 113–117),
any other as .mat file.

The .mat and .dat formats save the data in human readable (ascii) format, the rest in
binary format. For general matrices, use .mat for flexibility and easy of use, and .fmt
format for speed (it can be an order of magnitude faster than .mat for large files).
The other formats are more appropriate for database style data, where the number
of rows (observations) is larger than the number of columns (variables). In that case
.in7 is the fastest. Old-format spreadsheet files (.xls) cannot save matrices larger
than 65 536×256, although Ox allows up to 65 536 columns. For more information
on spreadsheet files see Database::LoadXlsx(); for an example of a .mat file see
loaddata().
Where required, the sample start is set to 1 (1), the frequency to 1, and the variable
names to Var1, Var2, The Database class allows proper treatment of sample
periods and variable names.
When writing a matrix file (see loadmat for an example), the values are written to
full precision (16 significant digits). A NaN (Not a Number) is written as a dot.
All written files (including .fmt) are identical on each platform, so that a file can
be written under Windows, transferred to a Sun in binary mode, and then read again
using loadmat. So, the files are written in Windows byte ordering (little endian;
also see fwrite). Gauss under Unix writes .fmt files in a different format. The
only exception are v96 .fmt files, which write the data in the format that is native
to the platform on which Ox is running. The file stores information on the byte

216 Chapter 8 Function reference

ordering, and such a file can again be read on any platform.
The loadmat function has a further discussion of the formats.

Error and warning messages
savemat(): cannot open file
Can only save . . . variables

See also
Database class, loadmat (for an example)

savesheet 217

savesheet
savesheet(const sname, const sheet);

sname in: string containing the file name to save to
sheet in: two-dimensional array or matrix to save

Return value
Returns 1 if successful, 0 if the file cannot be created.

Description
Saves as an .xlsx file.

See also
Database class, loadsheet (for an example)

218 Chapter 8 Function reference

scan
scan(const a, ...);

a in: any type
. . . in: any type

Return value
Returns the number of arguments successfully scanned and assigned.

Description
This function works as fscan, but reading from the console, not a file. Any text in
the scanning string which does not have an input format is echoed to the console
(this is different from the standard C scanf function).

See also
fscan, fwrite, sscan

Example
The following example reads one input line at a time (leading spaces in each line
are skipped, because of the starting space in " %z", and reads from that string using
scan. The * in "%*d" suppresses assignment, so the integer is skipped in the file.
#include <oxstd.oxh>
main()
{

decl c, i, d, m;

c = scan("Enter an integer: %d", &i,
"Enter a double: %f", &d);

print("items read=", c, " int=", i, " dbl=", d, "\n");

c = scan("Enter a 2 x 2 matrix: %#m", 2, 2, &m);
print("items read=", c, " mat=", m);

c = scan("Enter a matrix with dimensions: %m", &m);
print("items read=", c, " mat=", m);

}

This program produces (keyboard input is written in italics):
Enter an integer: 24
Enter a double: 25
items read=2 int=24 dbl=25

Enter a 2 x 2 matrix: 1 0 0 1
items read=1 mat=

1.0000 0.00000

0.00000 1.0000

Enter a matrix with dimensions: 2 2 1 0 0 1
items read=1 mat=

1.0000 0.00000

0.00000 1.0000

selectc 219

selectc, selectr, selectifc, selectifr, selectrc
selectc(const ma);

selectc(const ma, const mval);

selectr(const ma);

selectr(const ma, const mval);

selectifc(const ma, const mifc);

selectifr(const ma, const mifr);

selectrc(const ma, const mr, const mc);

ma in: m× n matrix to select from
mval in: p× q matrix with values to use for selection
mifc in: p× n boolean matrix specifying columns to select
mifr in: m× q boolean matrix specifying rows to select
mc in: p× n matrix with indices of columns to select
mr in: m× q matrix with indices of rows to select

Return value
The selectc function with one argument returns an m × s matrix, selecting
columns from ma which have a missing value (.NaN: not a number).
The selectr function with one argument returns an s × n matrix, selecting rows
from ma which have a missing value (.NaN: not a number).

The remaining forms do not have special treatment of missing values.

The selectc function with two arguments returns an m × s matrix, selecting the
columns from ma which have at least one element equal to an element in mval.
The selectr function with two arguments returns an s × n matrix, selecting the
rows from ma which have at least one element equal to an element in mval.
The selectif functions can be used to select rows or columns based on a logical ex-
pression: all rows (columns) which have a zero in the corresponding row (column)
are dropped.
The selectifc function returns anm×smatrix, selecting columns from ma which
have at least one non-zero element in the corresponding column of mifc.
The selectifr function returns an s × n matrix, selecting only those rows from
ma which have at least one non-zero element in the corresponding row of mifr.
The selectrc function returns a 1×max(pn,mq) matrix, which holds the selected
elements. If an index is outside the matrix bounds of ma the corresponding element
in the return value is NaN.

All functions return an empty matrix (<>) if the selection is empty.
See also

deletec (for an example involving NaNs), deleter, deleteifc, deleteifr,
isdotnan, vecindex

Example
#include <oxstd.oxh>
main()
{

decl m = <0:3;4:7;8:11;12:15>, sel = <1,9,10,14>;
print(m, "select", selectc(m, sel), selectr(m, sel));
print("selectif", selectifr(m, m .< 0 || m .> 14));

220 Chapter 8 Function reference

print("selectrc", selectrc(m, <2,3,4>, <2,3,4>));
}

produces:
0.00000 1.0000 2.0000 3.0000
4.0000 5.0000 6.0000 7.0000
8.0000 9.0000 10.000 11.000
12.000 13.000 14.000 15.000

select
1.0000 2.0000
5.0000 6.0000
9.0000 10.000
13.000 14.000

0.00000 1.0000 2.0000 3.0000
8.0000 9.0000 10.000 11.000
12.000 13.000 14.000 15.000

selectif
12.000 13.000 14.000 15.000

selectrc
10.000 15.000 .NaN

setbounds 221

setbounds
setbounds(const ma, const dlo, const dhi);

ma in: m× n matrix
dlo in: scalar, lower bound (may be -.Inf)
dhi in: scalar, upper bound (may be +.Inf)

Return value
Returns the specified matrix, replacing values smaller than dlo by dlo and values
greater that dhi by dhi. Missing values remain missing.

See also
Ch. 5 (censored random variates)

Example
#include <oxstd.oxh>
main()
{

decl x = <1,2,3;4,5,6>;
print(setbounds(x, 3, 4));
print(setbounds(x, -.Inf, 4));
print(setbounds(x, 2, .Inf));

}

produces
3.0000 3.0000 3.0000
4.0000 4.0000 4.0000

1.0000 2.0000 3.0000
4.0000 4.0000 4.0000

2.0000 2.0000 3.0000
4.0000 5.0000 6.0000

222 Chapter 8 Function reference

setdiagonal, setlower, setupper
setdiagonal(const ma, const mdiag);

setlower(const ma, const ml);

setupper(const ma, const mu);

setlower(const ma, const ml, const mdiag);

setupper(const ma, const mu, const mdiag);

ma in: m× n matrix
mdiag in: 1×min(m,n) or min(m,n)× 1 or m× n matrix or scalar
ml in: scalar, or m × n matrix, or vector, with new strict lower di-

agonal
mu in: scalar or m× n matrix with new strict upper diagonal

Return value
setdiagonal returns a matrix with the diagonal replaced by mdiag, which is either
a vector with the new diagonal elements, or a matrix from which the diagonal is
copied. If mdiag is scalar, all diagonal elements are set to that value.
setlower returns ma with the strict lower diagonal replaced by that of ml. If ml is
a scalar, each element is set to that value. If ml is a row or column vector, the strict
lower diagonal is set column-wise to the elements from the vector (until the vector
runs out).
setupper returns ma with the strict upper diagonal replaced by that of ml. If ml is
a scalar, each element is set to that value.
The following are equivalent:
setlower(ma,ml,mdiag) setdiagonal(setlower(ma,ml),mdiag)
setupper(ma,ml,mdiag) setdiagonal(setupper(ma,ml),mdiag)

See also
diag, diagonal, diagonalize, lower, upper

Example
#include <oxstd.oxh>
main()
{

decl ma = ones(2,2), mb = rann(3,3);
print(setdiagonal(ma, zeros(2,1)), setdiagonal(ma, 0),

setdiagonal(ma, zeros(2,2)));

ma = ones(3,3);
print(setlower(ma, mb, mb), setupper(ma, 0), setupper(ma, 0, 2));

}

0.00000 1.0000
1.0000 0.00000

0.00000 1.0000
1.0000 0.00000

0.00000 1.0000
1.0000 0.00000

0.22489 1.0000 1.0000
-0.91760 -0.67417 1.0000
0.22335 -0.14139 -0.18338

setdiagonal 223

1.0000 0.00000 0.00000
1.0000 1.0000 0.00000
1.0000 1.0000 1.0000

2.0000 0.00000 0.00000
1.0000 2.0000 0.00000
1.0000 1.0000 2.0000

224 Chapter 8 Function reference

shape
shape(const ma, const r, const c);

ma in: arithmetic type
r in: int
c in: int

Return value
Returns an r × c matrix, filled by column from vec(ma). If there are fewer than rc

elements in ma, the value 0 is used for padding.
Description

Shapes a matrix. It runs through the columns of ma from left to right, and can be
used e.g. to undo a vec operation. So shape puts the first r elements of ma in the
first column of the return matrix, etc. To do the opposite, namely put the first c
elements in the first row of the return matrx, use shape(ma, c, r)’.
Shape is closely related to vec:

v = shape(x, rows(x)*columns(x), 1)

is the same as v = vec(x).
shape(v, rows(x), columns(x))

undoes the vectorization.
See also

reshape, vec
Example

#include <oxstd.oxh>
main()
{

print(shape(<0:5>, 2, 4));
print(shape(<0:5>, 4, 2)’);

}

produces
0.00000 2.0000 4.0000 0.00000
1.0000 3.0000 5.0000 0.00000

0.00000 1.0000 2.0000 3.0000
4.0000 5.0000 0.00000 0.00000

sin, sinh
sin(const ma);

sinh(const ma);

ma in: arithmetic type
Return value

sin returns the sine of ma, of double or matrix type.
sinh returns the sine hyperbolicus of ma, of double or matrix type.

See also
acos (for examples), asin, atan, cos, cosh, sinh, tan, tanh

sizec 225

sizec, sizeof, sizer, sizerc
sizec(const ma);

sizeof(const ma);

sizer(const ma);

sizerc(const ma);

Return value
Returns an integer value which is the number of elements in the argument:

type rows columns sizer sizec sizerc

sizeof

int, double 0 0 1 1 1
m× n matrix m n m n m× n
string, length c c c 1 c c
array, length c c c 1 c c
file (r × c) r c c c r × c
other 0 0 0 0 0

A file type variable only has dimensions if it was opened using the ’f’ format.
See also

columns, rows
Example

#include <oxstd.oxh>
main()
{

decl i, d, m, s, a, res;
i = 0; d = 0.0;
m = unit(3,2);
s = "aap", a = {"a", "b"};
res = columns(i)~rows(i)~sizec(i)~sizer(i)~sizerc(i)

| columns(d)~rows(d)~sizec(d)~sizer(d)~sizerc(d)
| columns(m)~rows(m)~sizec(m)~sizer(m)~sizerc(m)
| columns(s)~rows(s)~sizec(s)~sizer(s)~sizerc(s)
| columns(a)~rows(a)~sizec(a)~sizer(a)~sizerc(a);

print("%r",
{"int","double","matrix[3][2]","string[3]","array[2]"},
"%c",
{"columns","rows","sizec","sizer","sizerc"},
"%8.1g", res);

}

produces:
columns rows sizec sizer sizerc

int 0 0 1 1 1
double 0 0 1 1 1
matrix[3][2] 2 3 2 3 6
string[3] 3 3 3 1 3
array[2] 2 2 2 1 2

226 Chapter 8 Function reference

solveldl
solveldl(const ml, const md, const mb);

ml in: m×m lower diagonal matrix L, LDL′ = A
md in: 1×m matrix with reciprocals of D
mb in: m× n matrix B, the right-hand side

Return value
Returns the m× n matrix X from solving AX = B.

Description
Solves AX = B for X following a square root free Choleski decomposition of A
using decldl (A is symmetric and positive definite).

See also
decldl (for an example), invertsym

solveldlband
solveldlband(const ml, const md, const mb);

ml in: p×m vector specifying the Lb matrix
md in: 1×m matrix with reciprocals of D
mb in: m× n matrix B, the right-hand side

Return value
Returns the m× n matrix X from solving AX = B.
If md is the empty matrix, the return value is m× n matrix X = L−1B.

Description
SolvesAX = B forX when A is a symmetric positive definite band matrix. Ab, the
band form of A, must have been decomposed using decldlband first. See under
decldlband for the storage format of Ab and examples to move between Ab and
A.

See also
decldlband (for an example), solvetoeplitz

solvelu 227

solvelu
solvelu(const ml, const mu, const mp, const mb);

ml in: m×m lower diagonal matrix L
(use 0 to indicate absence of L)

mu in: m×m upper diagonal matrix U
(use 0 to indicate absence of U)

mp in: 2 × m matrix with interchange permutations in the second
row
(use 0 to indicate absence of permutations)

mb in: m× n matrix B, the right-hand side
Return value

Returns the m × n matrix X from solving AX = B, where A is supplied in de-
composed form.

Description
Solves AX = B for X following a LU decomposition of A using declu: PA =
LU , whereL is lower diagonal andU upper diagonal. FirstLW = PB is solved for
W by forward substitution, thenW = UX is solved for x by backward substitution.
When a diagonal element of L or U is zero, the corresponding element of X will be
set to zero.
This function may be used to only do the forward or backward substitution part:

solvelu(L,0,0,B) solves LX = B,
solvelu(0,U,0,B) solves UX = B.

So can be used to invert a triangular matrix.
See also

declu (for an example), invert

228 Chapter 8 Function reference

solvetoeplitz
solvetoeplitz(const mr, const cm, const mb);

solvetoeplitz(const mr, const cm, const mb, alogdet);

mr in: double, or r × 1 or 1 × r matrix, specifying the symmetric
positive definite (band) Toeplitz matrix

cm in: dimension of complete Toeplitz matrix: m×m,m ≥ r
mb in: m× n matrix B, the right-hand side
alogdet in: (optional argument) address of variable

out: double, the logarithm of (the absolute value of) the determi-
nant of A

Return value
Returns the m × n matrix X from solving AX = B, or 0 if the Toeplitz matrix is
singular.

Description
Solves AX = B for X when A is symmetric Toeplitz. A Toeplitz matrix has the
same values along each diagonal (see under toeplitz). The algorithm is based on
the Levinson algorithm in Golub and Van Loan (1989, algorithm 4.7.2, page 187).
The algorithm also accepts a non-positive (non-singular) Toeplitz matrix, but note
that it computes log [abs(|A|)] for the optional third argument. The exponent of
that can only be computed for values ≤ DBL MAX E EXP and ≥ DBL MIN E EXP

(see Ch. 9).
See also

pacf, toeplitz
Example

#include <oxstd.oxh>
main()
{

decl ct = 10, mb, mt, mx;

mb = <2;3;4;5;6>;
mx = solvetoeplitz(<3,.5,.2,.1>, 5, mb);
print(mx’);
mx = invertsym(toeplitz(<3,.5,.2,.1>,5)) * mb;
print(mx’);

}

produces
0.46189 0.63974 0.88536 1.1737 1.7240
0.46189 0.63974 0.88536 1.1737 1.7240

sortbyc 229

sortbyc, sortbyr
sortbyc(const ma, const icol);

sortbyr(const ma, const irow);

ma in: matrix
icol in: scalar: index of column to sort, or

matrix: specifying the columns to sort by.
irow in: index of row to sort

Return value
The reordered (sorted in ascending order) matrix.

Description
The sortbyc function sorts the rows of a matrix according to the specified column;
sortbyr sorts the columns of a matrix according to the specified row. Sorting is in
ascending order using combsort (Lacey and Box, 1991).
If you want the sorting to be in descending order, you can use reversec after
sortbyc, and reverser after sortbyr.
The sortbyc function can also sort on multiple columns. In that case specify a
vector of columns on which to sort. The sorting is on the first specified column,
within that on the second, etc. The elements in the icol argument when it is a
matrix are processed by row, so corresponding to vecr(icol).

See also
reversec, reverser, sortc, sortr

Example
#include <oxstd.oxh>
main()
{

decl m = <1,0,3;0,4,4;4,3,0>;
print(sortbyc(m,0), sortbyr(m,0));

m = <1,3;1,2;3,4;3,5;2,3;2,2>;

print("%4.1g", m ~ sortbyc(m, 0) ~ sortbyc(m, 0~1));
}

produces
0.00000 4.0000 4.0000
1.0000 0.00000 3.0000
4.0000 3.0000 0.00000

0.00000 1.0000 3.0000
4.0000 0.00000 4.0000
3.0000 4.0000 0.00000

1 3 1 3 1 2
1 2 1 2 1 3
3 4 2 2 2 2
3 5 2 3 2 3
2 3 3 5 3 4
2 2 3 4 3 5

230 Chapter 8 Function reference

sortc, sortcindex, sortr
sortc(const ma);

sortr(const ma);

sortcindex(const mb);

ma in: matrix, array or string
mb in: row vector, column vector, array or string

Return value
If ma is a matrix, the return value is ma with each column (sortc) or row (sortr)
sorted in ascending order. If ma is scalar the return type and value are that of ma.
If ma is an array of strings, the strings are sorted in increasing order (all non-string
entries are pushed to the end, and will be in reverse order). If ma is a string, the
string is returned unchanged.
The sorting method used is combsort.
The sortcindex returns a column vector with the sorted index which results from
applying sortc(mb) (so v[sortcindex(v)] equals sortc(v)). A matrix argu-
ment to sortcindex must be a column vector or a row vector (the transpose is used
in the latter case, so sortcindex(v) and sortcindex(v’) are the same).
Applying sortcindex twice, as in sortcindex(sortcindex(v)), returns the
ranking.

See also
sortbyc, sortbyr

Example
#include <oxstd.oxh>
main()
{

decl m = <1,0,3;0,4,4;4,3,0>;
print(sortc(m), sortr(m));
print(sortcindex(m[0][]));
print(sortc({"x", "", 2, "aa", 1}));

}

produces
0.00000 0.00000 0.00000
1.0000 3.0000 3.0000
4.0000 4.0000 4.0000

0.00000 1.0000 3.0000
0.00000 4.0000 4.0000
0.00000 3.0000 4.0000

1.0000
0.00000
2.0000

[0] =
[1] = aa
[2] = x
[3] = 1
[4] = 2

spline 231

spline
spline(const my, const mx, const alpha);

spline(const my, const mx, const alpha, agcv);

my in: T × n matrix with variables (observations in columns) to
smooth

mx in: 0 for evenly spaced Y ,
else T ×m matrix with X (where m = 1: same X used for
all Y s, or m = n: corresponding X is used with Y)

alpha in: double, bandwidth α (also see below),
0: automatic bandwidth selection using GCV,
< 0: absolute value is bandwidth,
> 0: specifies equivalent number of parameters.

agcv in: (optional) address, returns GCV (generalized cross valida-
tion score) and ke (equivalent number of parameters)

Return value
Returns a T × n matrix with the smooth from applying the natural cubic spline.
The optional agcv argument is a 2×n matrix, with the generalized cross validation
(GCV) score in the first row, and the equivalent number of parameters in the second.

Description
The spline smoothes the cross plot of Y against time (mx argument is 0), or against
an x variable. Consider a plot of yt, against xt, and sort the data according to x:
a < x[1] < . . . < x[T] < b. In a spline model, the sum of squared deviations from
a function g is minimized, subject to a roughness penalty:

min

T∑
t=1

[
yt − g

(
x[t]
)]2

+ α

∫ b

a

[g′′ (x)]
2
dx.

Ox uses a natural cubic spline, which is cubic because the function g is chosen as a
third degree polynomial, and natural because the smooth is a straight line between a
and x[1] and between x[1] and b. Two good references on splines and nonparametric
regression are Green and Silverman (1994) and Hastie and Tibshirani (1994).
The α parameter is the bandwidth: the smaller α, the lower the roughness penalty,
and hence the closer the smooth will track the actual data.
There are three ways of specifying the bandwidth α :
0 use automatic bandwidth selection based on GCV;

The GCV criterion is computed as:

GCV (α) = T

(
RSS

T − 1.25ke + 0.5

)
.

A bracketing search algorithm is used to minimize GCV.
< 0 the absolute value is used for the bandwidth;

No iteration is required.
> 0 specifies the equivalent number of parameters ke to be used.

A bracketing search algorithm is used to locate the specified ke (ke is approxi-
mately comparable to the number of regressors used in a linear regression)

232 Chapter 8 Function reference

The spline is evaluated at the data points, where missing yt values (both in and
outside sample) are estimated by the fit from the smooth. Observations where both
yt and xt are missing are omitted in the calculations. The missing values used are
.NaN.
The spline procedure handles ties in the x variable. The algorithm used to com-
pute the spline is of order T , and consists of the Reinsch algorithm combined with
the Hutchinson-de Hooch algorithm for computing the GCV score (see Green and
Silverman, 1994, Chs. 2 & 3).
For evenly spaced data (e.g. cross plot against time), a natural cubic spline is
very close to the Hodrick–Prescott filter which is popular in macro-economics. By
default, the Hodrick–Prescott filter uses a bandwidth of 1600, in which case the
smoothers from both methods are virtually identical. Also see the OxMetrics book.

See also
lib/Spline3w.ox, lib/HPfilter.ox,

Example
The following example first smoothes the four variables in the variable my using
time as the X variable, and automatic bandwidth selection. The second observation
of the first variable is set to a missing value.
The second spline smoothes the cross plot of the last three variables against the first,
choosing the bandwidth as 12 equivalent parameters.
#include <oxstd.oxh>
#include <oxfloat.oxh>

main()
{ decl my, ms, gcv;

my = loadmat("data/data.in7");
my[1][0] = M_NAN;
ms = spline(my, 0, 0);
print("%c", {"CONS", "smooth"}, my[:4][0] ~ ms[:4][0]);

ms = spline(my[][1:], my[][0], 12, &gcv);
print("%r", {"GCV", "k_e"}, gcv);

}

produces
CONS smooth

890.45 890.01
.NaN 888.19

886.33 886.58
884.88 885.38
885.25 884.66

GCV 13.932 1.4645 24.309
k_e 12.000 11.999 11.999

sprint 233

sprint
sprint(const a, ...);

a in: any type
. . . in: any type

Return value
Returns a string containing the written text, or 0 if the sprint buffer was too small
(see sprintbuffer).

Description
Each argument is printed to a string. See print for a description of formatting.
There is a maximum text length: this is documented under sprintbuffer.

Error and warning messages
sprint(): no string buffer
sprint(): string buffer length exceeded

See also
eprint, print, sprintbuffer

Example
#include <oxstd.oxh>
main()
{

decl s = sprint("a", "_", "%0X", 10);
print(s);

}

produces: a_A

sprintbuffer
sprintbuffer(const len);

len in: int
Return value

Returns 0 of type int.
Description

Sets the size of the internal sprint buffer. The default is 16 × 1024 characters, and
this function is only needed if a larger buffer is needed for sprint (sprintbuffer
also used internally for sscan,fscan).

See also
sprint

234 Chapter 8 Function reference

sqr, sqrt
sqr(const ma);

sqrt(const ma);

ma in: arithmetic type
Return value

sqrt returns the square root of the elements of ma, of double or matrix type.
sqr returns the square of the elements of ma. If the input to sqr is a double or
matrix, the return type is a double or matrix. If the input is an integer, the return
type is integer unless the result would overflow in integer computation. In that case
the return type is double in order to represent the result.

Example
#include <oxstd.oxh>
main()
{

print(sqrt(<2,3>), <2,3> .^ 0.5);
print(sqr(<2,3>), <2,3> .^ 2);

println(sqr(2^14), isint(sqr(2^14)) ? " int" : " double");
println(sqr(2^15), isint(sqr(2^15)) ? " int" : " double");
println(pow(2,15), isint(pow(2,15)) ? " int" : " double");

}

produces
1.4142 1.7321
1.4142 1.7321
4.0000 9.0000
4.0000 9.0000

268435456 int
1.07374e+009 double
32768 double

See also
pow, ^ .^ (§13.8.3)

sscan 235

sscan
sscan(const string, const a, ...);

sscan(const astring, const a, ...);

sscan(const aipos, const string, const a, ...);

string in: string to scan from
astring in: reference of string to scan from, on return the scanned text

has been removed from the string
aipos in: reference of integer with position to scan from, on return up-

dated for the number of characters read from the string
a in: any type
. . . in: any type

Return value
Returns the number of arguments successfully scanned and assigned. If s is a string,
then sscan(s,. . . will leave the string unchanged, whereas sscan(&s,. . . will re-
move the read characters from the string. Returns −1 when at the end of the string.

Description
This function works as fscan, but reading from a string, not a file. See fscan for a
description of formatting; the "%#m" and "%#M" formats may not be used in sscan.
If a reference to the string is supplied, the read text is removed. When parsing a
large string the version that tracks position is more efficient because the underlying
string is not modified.

See also
fscan for format descriptions, fwrite, scan

Example
The following example (samples/inout/inout5.ox) reads one input line at a time
(leading spaces in each line are skipped, because of the starting space in " %z"),
and reads from that string using sscan. The * in "%*d" suppresses assignment, so
the integer is skipped in the file.
#include <oxstd.oxh>
main()
{

decl file, s, c;
decl svar, address;

file = fopen("data/data.in7", "%V");

do
{ // read one line of the file, skipping leading spaces

c = fscan(file, " %z", &s);
if (c > 0 && s[0] == ’>’)
{

sscan(&s, ">%s", &svar, "%*d", "%*d", "%*d",
"%*d", "%*d", "%d", &address, " ");

println("variable: ", svar, " address:", address, " remainder: ", s);
}

} while (c > 0);

fclose(file);

236 Chapter 8 Function reference

// read the file into a string
decl ipos = 0, s_all;
fread("data/data.zip//data.in7", &s_all, ’s’);
println("\nthe full text is:\n", s_all);

do
{ // read one line at a time, skipping leading spaces

c = sscan(&ipos, s_all, " %z", &s);
if (c > 0 && s[0] == ’>’)
{

sscan(s, ">%s", &svar, "%*d", "%*d", "%*d",
"%*d", "%*d", "%d", &address, " ");

println("variable: ", svar, " address:", address, " next line at:", ipos);
}

} while (c > 0);
}

If the .in7 file can be found, this program produces:
variable: CONS address:32 remainder: data 10-04-1992 13:20:38.33
variable: INC address:1336 remainder: data 10-04-1992 13:20:38.33
variable: INFLAT address:2640 remainder: data 10-04-1992 13:20:38.33
variable: OUTPUT address:3944 remainder: data 10-04-1992 13:20:38.33

the full text is:
pcgive 700
data data.bn7
; Tutorial Data Set :
; 4 equation model with oil shock for PcGive.
; October 1985
>CONS 1953 1 1992 3 4 32 data 01-03-2019 16:59:07
; Artificial consumption variable
>INC 1953 1 1992 3 4 1336 data 01-03-2019 16:59:07
; Artificial income variable
>INFLAT 1953 1 1992 3 4 2640 data 01-03-2019 16:59:07
; Artificial inflation variable
>OUTPUT 1953 1 1992 3 4 3944 data 01-03-2019 16:59:07
; Artificial output variable

variable: CONS address:32 next line at:177
variable: INC address:1336 next line at:282
variable: INFLAT address:2640 next line at:382
variable: OUTPUT address:3944 next line at:485

standardize 237

standardize
standardize(const ma);

ma in: T × n matrix A
Return value

Returns a T × n matrix holding the standardized columns of ma. If any variance is
≤ 10−20, then the corresponding column is set to 0.

Description
Standardization implies subtracting the mean, and then dividing by the standard
deviation. A standardized vector has mean zero and variance one.

See also
correlation (for an example), meanc, meanr, varc, varr, variance

string
string(const ma);

ma in: arithmetic type
Return value

Casts the argument to a string, see §13.8.2.4.
See also

double, sprint (for printing to a string)

238 Chapter 8 Function reference

strfind, strfindr, strifind, strifindr
strfind(const where, const what);

strfindr(const where, const what);

strifind(const where, const what);

strifindr(const where, const what);

Return value

where what return type (−1 if not found)
array of strings array of c string 1× c matrix with indices of occurrence
array of strings string int: index of occurrence of string what

string string int: index of occurrence of substring
what

string r × c matrix with 1×rcmatrix with indices of occurrence
character values (−1 if not found)

string character int: index of occurrence of character
what

Example
#include <oxstd.oxh>
main()
{

decl as1 = {"aa", "bb", "cc", "cc"};
decl as2 = {"cc", "dd", "aa"};

print("index = ", strfind(as1, "cc"), "\n",
"index = ", strfindr(as1, "cc"), "\n",
"index = ", strfind(as1, "ee"), "\n",
"index = ", strfind(as1, as2));

println("first ox is at position ", strfind("ooxox", "ox"),
" in \"ooxox\"");

println("last ox is at position ", strifindr("oOXoX", "ox"),
" in \"oOXoX\" (no case)");

println("x is at position ", strfind("ox", ’x’), " in \"ox\"");
println("x is at position ", strfind("OX", ’x’), " in \"OX\"");
println("x is at position ", strifind("OX", ’x’),

" in \"OX\" (no case)");
println("index of x,o in \"OX\" (no case):",

strifind("OX", ’x’~’o’));
}

produces (remember that the first entry has index 0):
index = 2
index = 3
index = -1
index =

2.0000 -1.0000 0.00000
first ox is at position 1 in "ooxox"
last ox is at position 3 in "oOXoX" (no case)
x is at position 1 in "ox"
x is at position -1 in "OX"
x is at position 1 in "OX" (no case)
index of x,o in "OX" (no case):

1.0000 0.00000

strlwr 239

strlwr, strtrim, strupr
strlwr(const s);

strtrim(const s);

strupr(const s);

s in: the strings to convert
Return value

Returns a copy of the string, which is converted to lower case (strlwr) or upper-
case (strupr). strtrim returns the string with leading and trailing white space
removed.

Example
#include <oxstd.oxh>
main()
{

decl s = "A StrinG\n";
print(strlwr(s), strupr(s), s);
s = " aa bb \t\n";
print("{", strtrim(s), "}");

}

produces
a string
A STRING
A StrinG
{aa bb}

submat
submat(const ma, const r1, const r2, const c1, const c2);

ma in: matrix
r1,r2 in: int
c1,c2 in: int

Return value
Returns the submatrix of ma from row indices r1 to r2 and column indices c1 to
c2. This is equivalent to ma[r1:r2][c1:c2], except that indices are truncated to
the matrix dimensions and an empty matriux is returned if the submatrix is entirely
outside the matrix.

See also
selectrc, [] (§13.8.2.5)

240 Chapter 8 Function reference

sumc, sumr
sumc(const ma);

sumr(const ma);

ma in: T × n matrix A
Return value

sumc returns a 1× n matrix with the sum of the column elements of ma.
The sumr function returns a T × 1 matrix with the sum of the row elements of ma.

See also
meanc, meanr, prodc, prodr, sumsqrc, sumsqrr, varc, varr

Example
#include <oxstd.oxh>
main()
{

print(sumc(<0:3;1:4;2:5>) | sumsqrc(<0:3;1:4;2:5>));
print(sumr(<0:3;1:4;2:5>) ~ sumsqrr(<0:3;1:4;2:5>));

}

produces
3.0000 6.0000 9.0000 12.000
5.0000 14.000 29.000 50.000

6.0000 14.000
10.000 30.000
14.000 54.000

sumsqrc, sumsqrr
sumsqrc(const ma);

sumsqrr(const ma);

ma in: T × n matrix A
Return value

The sumsqrc function returns a 1 × n matrix with the sum of the squares of the
column elements of ma.
The sumsqrr function returns a T × 1 matrix which holds the sum of the squares
of the row elements of ma.

See also
sumc (for an example), sumr, varc, varr

systemcall
systemcall(const s);

s in: string with system command
Return value

Returns the exit code from the system call.
Description

Performs a operating system call, waiting for the call to finish.
For example, systemcall("dir") lists the directory under Windows, while
systemcall("ls") does this under Linux. The output of the command is echoed
to the standard output console.

See also
chdir, getcwd, getenv

tailc 241

tailc
tailc(const ma, const cr);

tailc(const ma);

ma in: T × n matrix A
cr in: number of rows to take from the tail (negative: number to

drop from the head), default is 1
Return value

If r > 0: r × n matrix A[r :][], where r = max(T − r, 0).
If r < 0: r × n matrix A[r :][], where r = min(−r, T − 1).
Returns an empty matrix if r > T − 1.

See also
headc

242 Chapter 8 Function reference

tailchi, tailf, tailn, tailt
tailchi(const ma, const df);

tailf(const ma, const df1, const df2);

tailn(const ma);

tailt(const ma, const df);
ma in: arithmetic type
df in: arithmetic type, degrees of freedom
df1 in: arithmetic type, degrees of freedom in the numerator
df2 in: arithmetic type, degrees of freedom in the denominator

Return value
Returns the requested tail probabilities at ma (between zero and one):
tailchi tail probabilities from χ2(df) distribution
tailf tail probabilities from F (df1, df2) distribution
tailn one-sided standard normal tail probability
tailt one-sided tail probabilities from student-t(df) distribution

The tail probabilities are accurate to about 10 digits. The return type is as follows:

returns ma degrees of freedom arguments
m× n matrix m× n matrix scalar (int for tailt)
m× n matrix scalar m× n matrix
m× n matrix m× n matrix m× n matrix
double scalar scalar (int for tailt)

See also
dens..., prob..., quan...

Example
#include <oxstd.oxh>
main()
{

print("%r", {"chi(2):"}, tailchi(<0,4.61,5.99>, 2));
print("%r", {"normal:"}, tailn(<-1.96, 0, 1.96>));
print("%r", {"t(4): "}, tailt(<-1.96, 0, 1.96>, 4));
print("%r", {"t(50): "}, tailt(<-1.96, 0, 1.96>, 50));

}

produces
chi(2): 1.0000 0.099759 0.050037
normal: 0.97500 0.50000 0.024998
t(4): 0.93922 0.50000 0.060777
t(50): 0.97221 0.50000 0.027790

tan, tanh
tan(const ma);

tanh(const ma);

ma in: arithmetic type
Return value

tan returns the tangent of ma, of double or matrix type.
tanh returns the tangent hyperbolicus of ma, of double or matrix type.

See also
acos (for examples), asin, atan, cos, cosh, sin, sinh, tanh

thinc 243

thinc, thinr
thinc(const ma, const c);

thinr(const ma, const r);
ma in: m× n matrix A
c in: int, desired number of columns to extract
r in: int, desired number of rows to extract

Return value
The thinc function returns an m× c matrix consisting of a selection of columns of
the original matrix.
The thinr function returns an r ×n matrix consisting of a selection of rows of the
original matrix.

Description
The thinc function selects columns as follows:

0, g, 2g, 3g, . . . , (c− 1)g,

where g = 1 + int
(
n− c

c− 1

)
if c > 1.

The thinr function selects rows similarly.
The example below also indicates how to draw a random sample.

See also
aggregatec, aggregater

Example
Note in the example that, strictly speaking, it is not necessary to truncate the random
indices in idx, as this is done automatically when using a matrix to index another
matrix.
#include <oxstd.oxh>
main()
{

decl m = rann(1000, 2), idx;
print(thinr(m, 3) ~ m[<0,499,998>][]);
print(thinc(m’, 3)’ ~ m[<0,499,998>][]);

/* get three random indices in idx */
idx = trunc(ranu(1,3) * rows(m));
print(idx, m[idx][] ~ m[sortr(idx)][]);

}

produces
0.22489 1.7400 0.22489 1.7400
-0.21417 -1.0037 -0.21417 -1.0037
0.084549 0.83591 0.084549 0.83591

0.22489 1.7400 0.22489 1.7400
-0.21417 -1.0037 -0.21417 -1.0037
0.084549 0.83591 0.084549 0.83591

408.00 852.00 877.00

1.9639 0.073371 1.9639 0.073371
0.25375 -1.2006 0.25375 -1.2006
-1.1932 -0.52929 -1.1932 -0.52929

244 Chapter 8 Function reference

time
time();

Return value
A string holding the current time.

See also
date (for an example)

timeofday
timeofday();

timeofday(const index);

timeofday(const hours, const minutes);

timeofday(const hours, const minutes, const seconds);

timeofday(const hours, const minutes, const seconds, const h100s);

index in: in: arithmetic type, calendar index of a certain date with frac-
tional time

hours in: arithmetic type, hours on 24-hour clock
minutes in: arithmetic type, minutes
seconds in: arithmetic type, seconds
h100s in: arithmetic type, hundreds

Return value
The timeofday function without any arguments returns the fraction of the calendar
index representing the current time.
The timeofday function with two or more arguments returns the fraction of the
calendar index of the specified time (see below). If all arguments are an integer, the
return value will be an integer.
The timeofday function with one argument takes a calendar index (or vector of
indices), as argument, returning a n× 4 matrix with the quadruplet hours, minutes,
seconds, hundreds in each row (n is the number of elements in the input).

Description
The calendar index is the Julian day number, with an optional fractional part to
specifies the fraction of the day: 2453402.75 corresponds to 2005-01-01T18:00. If
the day number is zero, it is interpreted as a time only, so 0.75 is just 18:00 (6 PM).
The "%C" print format is available to print or scan a calendar index.

See also
dayofcalendar, print, timing

Example
#include <oxstd.oxh>
main()
{

decl timeidx = range(0,4)’ / 6 + range(0,4)’ / 360;

println("%cf", {"%5.0f","%5.0f","%5.0f","%5.0f","; %20C"},
timeofday(timeidx) ~ timeidx + dayofcalendar(2005,1,1));

println("time today ", "%C", timeofday());
}

timer 245

produces
0 0 0 0; 2005-01-01
4 4 0 0; 2005-01-01T04:04:00
8 8 0 0; 2005-01-01T08:08:00

12 12 0 0; 2005-01-01T12:12:00
16 16 0 0; 2005-01-01T16:16:00

time today 22:11

timer, timespan
timer();

timespan(const time);

timespan(const time, const time0);

time in: double, value from previous call to timer

time0 in: double, (optional argument) start time
Return value

The timer function returns a double representing the current elapsed processor time
in one 100th of a second. (Under Windows this is the elapsed time since the process
started; under Linux, it is the CPU time used so far, ignoring time taken by other
processes.)
The timespan(time) function with returns a string holding the processor time
lapsed since the time argument.
The timespan(time, time0) function with returns a string holding the time
lapsed between time and time0. Both arguments must be measured in one 100th
of a second.

See also
today

Example
#include <oxstd.oxh>
main()
{

decl i, time, m = rann(100,10), m2;

time = timer();

for (i = 0; i < 1000; ++i)
m2 = m’m;

print("time lapsed: ", timespan(time), "\n");
print("or in seconds: ", (timer() - time) / 100, "\n");
print("time lapsed: ", timespan(time, timer()), "\n");

}

prints the time it took to do the for loop.

246 Chapter 8 Function reference

timestr, timing, today
timestr(const time);

timing(const mdates);

timing(const mtimes, const mode);

today();

time in: double, date expressed as number of seconds since 1 January
1970 at 00:00:00 (e.g. a value from timing)

mdates in: T × k matrix with date and time, in order: year, month, day,
hour, minute, second (see below).

mtimes in: m× n matrix with dates expressed in seconds.
mode in: int, 0 (or absent): convert date/time to seconds; 1: convert

seconds to date/time; 2: convert seconds to calendar index as
used in dayofcalendar and timeofday.

Return value
The timing function with mode 0 (or no mode specified) converts a T ×k matrix of
year, month, . . . , seconds (see below) to a T ×1 vector with the date/time expressed
as the number of seconds since 1 January 1970 at 00:00:00.
The timing function with mode 1 converts an m × n matrix of seconds, returning
anmn×6 matrix with respectively year, month, day, hour, min, sec in the columns.
The timing function with mode 2 converts an m× n matrix (or a single double) of
seconds to calendar indices, returning an m× n matrix (or a double).
The timestr function returns the date/time expressed as a text string:
"year-month-day hour:min:sec". The time is omitted if it is 00:00:00.
The today function returns a double with the current date/time expressed in sec-
onds.

Description
These functions work with time in seconds: the number of seconds since 1 January
1970 at 00:00:00. This is more restrictive and less convenient than the calendar
index (with fraction for time) that is used in dayofcalendar and timeofday.
The input matrix for timing with mode 0 (or no mode specified) has a specified
data and time in each row, with the columns organized as:

column item values
0 year full year (e.g. 1970)
1 month month in year, 1 . . . 12 (e.g. 2 for February)
2 day day in month, 1 . . . 31
3 hour hour in day, 0 . . . 23
4 min minutes, 0 . . . 59
5 sec seconds, 0 . . . 59

The actual input matrix may have fewer columns, in which case the remainder is
assumed to be zero (one for month and day).

See also
dayofcalendar, timeofday, timer

timestr 247

Example
#include <oxstd.oxh>
main()
{

decl time1, time2;

time1 = timing(<1990, 12, 1; 1991, 1, 1>);
time2 = timing(<1990, 12, 1, 12, 0, 1>);

println("time1[0]: ", timestr(time1[0]));
println("time1[1]: ", timestr(time1[1]));
println("time2: ", timestr(time2));
println("today: ", timestr(today()));
println("today: ", "%6.0f", timing(today(), 1));
println("today: ", "%C", timing(today(), 2));

}

which produces as output:
time1[0]: 1990-12-01
time1[1]: 1991-01-01
time2: 1990-12-01 12:00:01
today: 2012-06-26 14:27:44
today:
2012 6 26 14 27 44

today: 2012-06-26T14:27:44

248 Chapter 8 Function reference

toeplitz
toeplitz(const ma);

toeplitz(const ma, const cm);

ma in: double, or r × 1 or 1× r matrix
cm in: (optional argument) m: dimension of matrix to be created,

m ≥ r; if the argument is missing, m = r is used.
Return value

Returns a symmetric Toeplitz matrix.
Description

Creates a symmetric Toeplitz matrix using the supplied argument. A Toeplitz matrix
has the same values along each diagonal. Here we allow for a banded Toeplitz
matrix, e.g. when r = 3 and m = 5:

a0 a1 a2 0 0
a1 a0 a1 a2 0
a2 a1 a0 a1 a2
0 a2 a1 a0 a1
0 0 a2 a1 a0


When the bandwith equals the dimension (i.e. there are no zeros: m = r), we write
T (a0, a1, . . . , am−1) for the Toeplitz matrix.
See also

diag, pacf, solvetoeplitz (for an example)

trace
trace(const ma);

ma in: arithmetic type
Return value

Returns the trace of ma (the sum of its diagonal elements). Return type is double.
See also

determinant

Example
#include <oxstd.oxh>
main()
{

print(trace(<2,1;1,4>));
}

produces: 6

trunc 249

trunc, truncf
trunc(const ma);

truncf(const ma);

ma in: arithmetic type
Return value

trunc returns the truncated elements of ma, of double or matrix type.
truncf is fuzzy truncation.

Description
Truncation is rounding towards zero, however, the result remains a double value.
Note that conversion to an integer also results in truncation, but that in that case the
result is undefined if the real number is too big to be represented as an integer.
truncf multiplies positive numbers by one plus the fuzziness (1e-13) (one minus
fuzziness for negative numbers) before truncation.

See also
ceil, floor, round,

Example
#include <oxstd.oxh>
main()
{

print(trunc(<-2.0-1e-15, -2.0+1e-15, 2.0-1e-15, 2.0+1e-15>));
print(truncf(<-2.0-1e-15, -2.0+1e-15, 2.0-1e-15, 2.0+1e-15>));

}

produces
-2.0000 -1.0000 1.0000 2.0000
-1.0000 -1.0000 2.0000 2.0000

250 Chapter 8 Function reference

union, unique
union(const ma);

unique(const ma);

ma in: matrix
mb in: matrix

Return value
unique returns the sorted unique elements of ma as a row vector.
union returns a row vector with the sorted unique elements of ma and mb combined.
Returns an empty matrix if the result is empty. Missing values are skipped.

See also
exclusion (for an example), intersection

unit
unit(const rc);

unit(const r, const c);

rc in: int
r in: int
c in: int

Return value
Returns an rc by rc identity matrix (one argument), or a r by c matrix with ones
on the diagonal (rest zero).

See also
constant, unit, zeros

Example
#include <oxstd.oxh>
main()
{

print(unit(2));
}

produces
1.0000 0.00000
0.00000 1.0000

unvech 251

unvech
unvech(const va);

va in: arithmetic type, (column or row) vector to make into sym-
metric matrix

Return value
Returns a symmetric matrix, given the vectorized lower diagonal of a symmetric
matrix.

Description
Undoes the vech operation.

See also
vech (for an example)

upper
upper(const ma);

ma in: m× n matrix
Return value

Returns the upper diagonal (including the diagonal), i.e. returns a copy of the input
matrix with strict lower-diagonal elements set to zero.

See also
lower (for an example), setdiagonal, setlower, setupper

252 Chapter 8 Function reference

va arglist
va_arglist();

Return value
Returns an array holding the arguments starting with the first variable in the variable
argument list.

Description
See §13.5.5.5.

Example
#include <oxstd.oxh>
test(const a, ...)
{

decl i, args = va_arglist();

println("number of extra arguments: ", sizeof(args));
for (i = 0; i < sizeof(args); i++)

println("vararg [", i, "] = ", args[i]);
}
main()
{

test("tinker", "tailor", "soldier");
}

which prints
number of extra arguments: 2
vararg [0] = tailor
vararg [1] = soldier

varc 253

varc, varr
varc(const ma);

varr(const ma);

ma in: T × n matrix A
Return value

The varc function returns a 1× n matrix with the variances of the columns of ma.
The varr function returns a T × 1 matrix holding the variances of the rows of ma.

Description
The variance of xt, t = 1, . . . T is computed as:

1
T

∑T
t=1 (xt − x̄)

2
, where x̄ = 1

T

∑T
t=1 xt.

See also
meanc, meanr, sumc, sumr, variance

Example
#include <oxstd.oxh>
main()
{

decl m1 = rann(100,2), m2;
print(variance(m1), varc(m1) | varr(m1’) ’);

}
1.0356 -0.037133

-0.037133 0.86569

1.0356 0.86569
1.0356 0.86569

variance
variance(const ma);

ma in: T × n matrix A
Return value

Returns an n× n matrix holding variance-covariance matrix of ma.
Description

The variance-covariance matrix of a T × n matrix A = (a0, . . . , an−1) is:

T−1Ǎ′Ǎ, where Ǎ = (a0 − ā0, . . . an−1 − ān−1), and āi = 1
T

∑T−1
t=0 ait.

See also
acf, correlation, meanc, meanr, standardize, varc, varr

Example
#include <oxstd.oxh>
main()
{

decl m1 = rann(100,2), m2 = m1 - meanc(m1);
print(variance(m1), m2’m2/rows(m2));

}
1.0356 -0.037133

-0.037133 0.86569

1.0356 -0.037133
-0.037133 0.86569

254 Chapter 8 Function reference

vec
vec(const ma);

ma in: arithmetic type
Return value

If ma is an m × n matrix, the return value is an mn × 1 matrix consisting of the
stacked columns of ma. If ma is scalar, the return value is an 1 × 1 matrix with the
value ma.

Description
Vectorizes a matrix by stacking columns. The shape function can be used to undo
the vectorization.

See also
shape, vech, vecr

Example
#include <oxstd.oxh>
main()
{

print(vec(<0,1;2,3>));
}

produces
0.00000
2.0000
1.0000
3.0000

vech
vech(const ma);

ma in: arithmetic type
Return value

If ma is an m × n matrix, the return value is an (m(m + 1)/2 − j(j + 1)/2) × 1
matrix, where j = max(m − n, 0), consisting of the stacked columns of the lower
diagonal of ma. If ma is scalar, the return value is a 1× 1 matrix with the value ma.

Description
Vectorizes the lower diagonal of a matrix by stacking columns. use unvech to undo
this vectorization.

See also
unvech, vec, vecr

Example
#include <oxstd.oxh>
main()
{

decl m = <0,1;2,3>;
print(vech(m), unvech(vech(m)));

}

produces
0.00000
2.0000
3.0000

0.00000 2.0000
2.0000 3.0000

vecindex 255

vecindex

vecindex(const ma);

vecindex(const ma, const mfind);

ma in: matrix, array, or string
mfind in: matrix (optional argument)

Return value
vecindex with one argument returns a p × 1 matrix holding the row index of the
non-zero elements of vec(ma), where p is the number of non-zero elements in ma. If
there is no non-zero element, the function returns the empty matrix (<>). A .NaN in
ma is treated as a non-zero.
vecindex with two arguments returns a p×1 matrix holding the sorted row indices
of the elements of vec(ma) which appear in mfind. If none are found, the function
returns the empty matrix (<>). The second argument can also be used to find the
.NaNs in ma.
vecindex with an array as first arguments, returns a column vector with the in-
dex (indices) of mfind. If the first argument is a string, the indices of the mfind

character.
Description

The one argument version is often used with a boolean expression:
vecindex(x .< 0 .|| x .== 10)

A scalar second argument locates all indices that have that value:
vecindex(x, 5)

If the second argument is a matrix, vecindex returns the sorted indices of elements
of the first argument that occur in the second. Use find instead to determine the
location of the elements of one vector in another.

See also
find, shape, vec

Example
#include <oxstd.oxh>
main()
{

decl x = <0,1,2;0,2,0>;
print(vec(x), vecindex(x)’, vecindex(x, 0)’);

println("examples with arrays and string");
print("%4.0f", vecindex({"A",1,"B",1}, 1)’);
print("%4.0f", vecindex({"A",1,"B",1}, "B"));
print("%4.0f", vecindex({{"A","C"},1,"B",1}, {"A","C"}));
print("%4.0f", vecindex("ABBAC", ’A’)’);

}

produces
0.00000
0.00000
1.0000
2.0000
2.0000

0.00000

256 Chapter 8 Function reference

2.0000 3.0000 4.0000

0.00000 1.0000 5.0000
examples with arrays and string

1 3

2

0

0 3

vecr 257

vecr
vecr(const ma);

ma in: arithmetic type
Return value

If ma is an m × n matrix, the return value is an mn × 1 matrix consisting of the
stacked transposed rows of ma. If ma is scalar, the return value is a 1 × 1 matrix
consisting of the value ma.

Description
Vectorizes a matrix by stacking rows into a column vector. This is compatible with
using one empty index on a matrix (see the example).

See also
reshape, vec, vech, vecrindex

Example
#include <oxstd.oxh>
main()
{

decl x = <0,1;2,3>;
print(vecr(x) ~ x[]);

}

produces
0.00000 0.00000
1.0000 1.0000
2.0000 2.0000
3.0000 3.0000

258 Chapter 8 Function reference

vecrindex
vecrindex(const ma);

vecrindex(const ma, const mfind);

vecrindex(const ma, const mfind, const bunique);

ma in: matrix
mfind in: matrix (optional argument)
bunique in: int (optional argument when mfind is present)

Return value
vecrindex with one argument returns a p× 1 matrix holding the row index of the
non-zero elements of vecr(ma), where p is the number of non-zero elements in ma.
If there is no non-zero element, the function returns the empty matrix (<>). A .NaN

in ma is treated as a non-zero.
vecrindex with two arguments returns a p × 1 matrix holding the row indices of
the elements of vecr(ma) which appear in mfind. If none are found, the function
returns the empty matrix. The second argument can also be used to find the .NaNs.
If the optional third argument is TRUE, then the return value has at most the dimen-
sion of vecr(mfind); for each element in vecr(mfind) the first occurrence in ma

is reported (if any). This can be faster when ma is large, and you know that each
occurrence occurs only once.

See also
find, vecindex, vecr

Description
vecrindex is compatible with using one index on a matrix. When ma is a vector,
vecrindex and vecindex will give identical results.

Example
#include <oxstd.oxh>
main()
{

decl x = <0,1,2;0,2,0>;
print(vecr(x), "1 argument:", vecrindex(x)’,

"2 arguments:", vecrindex(x, 0)’,
"3 arguments:", vecrindex(x, <0,2>, 1)’);

print("non-zeros:", vecr(x)[vecrindex(x)]’,
"zeros:", vecr(x)[vecrindex(x, 0)]’);

}
0.00000
1.0000
2.0000

0.00000
2.0000

0.00000
1 argument:

1.0000 2.0000 4.0000
2 arguments:

0.00000 3.0000 5.0000
3 arguments:

0.00000 2.0000
non-zeros:

1.0000 2.0000 2.0000
zeros:

0.00000 0.00000 0.00000

zeros 259

zeros
zeros(const r, const c);

zeros(const ma);

r in: int
c in: int
ma in: matrix

Return value
zeros(r,c) returns an r by c matrix filled with zeros.
zeros(ma) returns a matrix of the same dimension as ma, filled with zeros.

See also
nans, ones, unit, new

Example
#include <oxstd.oxh>
main()
{

print(zeros(2, 2));
}

produces
0.00000 0.00000
0.00000 0.00000

Chapter 9

Predefined Constants

oxstd.oxh defines (requires #include <oxstd.oxh>):
FALSE 0
TRUE 1

oxfloat.oxh defines (requires #include <oxfloat.oxh>):
M PI π
M 2PI 2π
M PI 2 π/2
M 1 PI 1/π

M SQRT2PI
√
(2π)

M E e = exp(1)
M EULER Euler’s constant, γ
M NAN .NaN (Not a Number),

also see isnan and isdotnan

M INF .Inf (Infinity)
M INF POS +.Inf (Infinity)
M INF NEG -.Inf (minus Infinity)
DBL DIG number of decimal digits of precision
DBL EPSILON machine precision ϵm,

smallest number such that 1.0 + ϵm ! = 1.0
DBL MANT DIG number of bits in mantissa
DBL MAX maximum double value
DBL MIN minimum positive double value
DBL MIN EXP minimum 2 exponent
DBL MAX EXP maximum 2 exponent
DBL MIN E EXP minimum e exponent
DBL MAX E EXP maximum e exponent
DBL MIN 10 EXP minimum 10 exponent
DBL MAX 10 EXP maximum 10 exponent
INT MAX maximum integer value
INT MIN minimum integer value

260

9.1 Missing values (NaN) 261

The following constants are predefined by the Ox compiler:

OX 64 BIT when running 64-bit Ox
OX BIG ENDIAN only on a big-endian machine (currently none)
OX Linux when running on Linux/PC
OX PARALLEL indicates that parallel and serial keywords are supported

(Ox 7 onwards)
OX OS X when running on macOS
OX Windows when running under Windows

9.1 Missing values (NaN)
“nobreak

The hardware-defined missing value is called Not a Number, or .NaN for short. Any
computation involving a .NaN results in a .NaN. The format used when printing output
is .NaN.

In a matrix constant, either .NaN, M NAN or a dot may be used to represent a missing
value (M NAN requires oxfloat.oxh). If the dot is the first or last element, an extra
space is required to avoid confusion with dot-greater/less than.

In a double constant, either .NaN or M NAN may be used to represent a missing value
(M NAN requires oxfloat.oxh).

A number of procedures are available to deal with missing values, most importantly:

• deletec(): deletes all columns which have a .NaN,
• deleter(): deletes all rows which have a .NaN,
• isdotnan(): returns matrix of 0’s and 1’s: 1 if the element is a .NaN, 0 otherwise,
• isnan(): returns 1 if any element is a .NaN, 0 otherwise.
• selectc(): selects all columns which have a .NaN,
• selectr(): selects all rows which have a .NaN,

9.2 Infinity
“nobreak

Infinity also exists as a special value supported by the hardware. Infinity can be pos-
itive or negative (printed as +.Inf and -.Inf), and can be used in comparisons as any
normal number. You can use .Inf, +.Inf and -.Inf in your code. Alternatively, the
predefined constants M INF, M INF POS, and M INF NEG are defined in oxfloat.oxh.
The isdotinf() function tests for infinity.

Chapter 10

Graphics function reference

10.1 Introduction

Graphs in Ox are drawn on a graphics worksheet, consisting of 15 000 by 10 000 pixels,
with (0,0) in the bottom left corner:

(0, 0)

• (700,3200)

(15 000, 10 000)

Positions can be specified in pixel coordinates, as for example (px, py)
= (70, 3200). More often it is convenient to use real world coordinates. This is
done by specifying an area on the graphics worksheet, and attaching real world
coordinates to it. These areas are allowed to overlap, but need not:

(0, 0)

0

2

1

3

(15 000, 10 000)

Suppose we have set up all areas as being from (x, y) = (0.0, 0.0) to (x, y) =
(1.0, 1.0) (again within each area the origin is the lower left corner). Then we can draw
a line through area 2 in two ways:

262

10.1 Introduction 263

1. in real coordinates within an area
step 1: select area 2;
step 2: move to (0.0, 0.0);
step 3: draw a line to (1.0,1.0).

2. using pixel coordinates on the worksheet
step 1: move to pixel coordinates (600,600);
step 2: draw a line to pixel coordinates (3600, 3600),

where we assume that (600,600) to (3600,3600) are the pixel coordinates chosen for
area 2. Drawing in real world coordinates has the advantage that it corresponds more
closely to our data.

In general we use high level drawing functions. These select an area, and a type of
graph, and give the data to plot. Note that the supplied matrix must have the data in
rows (unlike, for example,. the Database, where it is in columns). Several functions
documented below expect an m × T matrix for T observations on m variables. The
header file to be included for graphics is oxdraw.oxh.

0 5 10 15 20 25 30

-1

0

1

2 Var1 Var2

0 5 10 15 20 25 30

-1

0

1

2 Var1 Var2

1960 1965

-1

0

1

2 Var1 × Var1 Var2 × Var1

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1

0

1

2 Var1 × Var1 Var2 × Var1

Figure 10.1 PDF file from draw1.ox

264 Chapter 10 Graphics function reference

Example
. samples/graphics/draw1.ox
#include <oxstd.oxh>
#include <oxdraw.oxh>

main()
{

decl m = rann(30,2);

Draw(0, m’, 0, 1);
DrawMatrix(1, m’, {"Var1", "Var2"}, 0, 1, 2);
DrawT(2, m’, 1960, 1, 4);
DrawXMatrix(3, m’, {"Var1", "Var2"}, m’, "Var1", 1, 3);

SetDrawWindow("draw1");
ShowDrawWindow();
SaveDrawWindow("draw1.ps");

}
. .

The file draw1.pdf produces Fig. 10.1. The SetDrawWindow function is only
relevant when you use OxRun to run the program. Then it may be used to specify
the name of the graphics window in OxMetrics.

Example
. samples/graphics/draw2.ox
#include <oxstd.oxh>
#include <oxdraw.oxh>

main()
{

decl m = rann(100,2);

DrawAcf(0, m[][0]’, "var", 9);
DrawDensity(1, m[][0]’, "var", TRUE, TRUE, TRUE);
DrawQQ(2, m[][0]’, "var", QQ_N, 0, 0);
DrawQQ(3, m[][0]’, "var", QQ_U, 0, 0);

ShowDrawWindow();
SaveDrawWindow("draw2.pdf");

}
. .

The file draw2.pdf produces Fig. 10.2.

10.2 Symbol and line types 265

ACF-var

0 5 10

-0.5

0.0

0.5

1.0
ACF-var var N(s=1.02)

-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

Density
var N(s=1.02)

var × normal

-2 -1 0 1 2

-2

0

2

QQ plot
var × normal var

0.0 0.2 0.4 0.6 0.8 1.0

-2

0

2

Q plot
var

Figure 10.2 draw2.pdf

10.2 Symbol and line types

Table 10.1 Symbol types in graphics

PL FILLBOX filled box PL FILLCIRCLE filled circle
PL BOX open box PL TRIANGLE triangle
PL PLUS plus PL FILLTRIANGLE filled triangle
PL DASH dash PL DIAMOND diamond
PL CIRCLE circle PL FILLDIAMOND filled diamond
PL LINE line PL CROSS cross

Table 10.2 Line types in graphics

TP SOLID solid line
TP DOTTED dotted line
TP DASHED dashed line
TP LDASHED long-dashed line
TP USER user-defined line

266 Chapter 10 Graphics function reference

Table 10.3 Plotting styles in graphics

ST LINE line (points connected)
ST SYMBOLS symbols
ST LINESYMBOLS line and symbols
ST INDEX index line
ST INDEXSYMBOLS index line with symbols
ST BARS bars
ST SHADING shading

Table 10.4 Default line attributes in graphics

index color line type width symbol size
0 white solid 10 plus 90
1 black solid 6 plus 90
2 red solid 10 plus 90
3 blue solid 10 box 90
4 blue/green solid 10 circle 90
5 purple dotted 10 plus 90
6 green dotted 10 plus 90
7 brown/yellow long dash 10 plus 90
8 dark purple long dash 10 plus 90
9 pastel yellow dotted 10 plus 90
10 pastel green dotted 10 plus 90
11 pastel blue solid 10 plus 90
12 solid 10 plus 90
13 light grey solid 10 plus 90
14 grey solid 10 plus 90
15 light grey solid 10 plus 90

Table 10.5 Default palette and error fan attributes in graphics

index color index color index color
-1 wireframe 2 red 5 purple
0 white 3 blue 6 green
1 black 4 blue/green 7 brown/yellow

10.3 Function reference 267

10.3 Function reference

CloseDrawWindow
CloseDrawWindow();

No return value.
Description

Starts a new draw window for subsequent graphs. Note that the OxMetrics graph-
ics window will remain active there. A call to ShowDrawDrawing also clears the
graphics buffer, so does not need to be followed by a call to CloseDrawWindow.

Draw
Draw(const iArea, const mYt);

Draw(const iArea, const mYt, const dXfirst, const dXstep);

iArea in: int, area index
mYt in: matrix, m× T matrix with m rows of data
dXfirst in: (optional) double,X-value of first observation, x, default is 1
dXstep in: (optional) double, gap between X-values, dx, default is 1

No return value.
Description

This function draws m variables against an X variable, where the X variable con-
sists of evenly spaced observations x, x+ dx, x+ 2dx, x+ 3dx, Each variable
is drawn by linking up the points. The first line index is 2.

DrawAcf
DrawAcf(const iArea, const vY, const sY, const cLag, ...);

DrawAcf(const iArea, const vY, const sY, const cLag, const fAcf,

const fPacf, const fErrorBand, int iIndex, const fBar);

iArea in: int, area index
mY in: k × T matrix, each row is a new plot
sY in: string, variable name, or array of strings (k > 1)
cLag in: int, highest lag to be used in the ACF
fAcf in: int, TRUE: draw ACF (optional argument, drawn

by default)
fPacf in: int, TRUE: draw PACF (optional argument, not

drawn by default)
fErrorBand in: int, TRUE: draw error bands (optional argument,

not drawn by default)
iIndex in: int, line index, see Table 10.4, (optional, default

is 2).
fBar in: int, TRUE: draw bar plot, else draw index plot

(optional argument, using bars by default)

268 Chapter 10 Graphics function reference

No return value.

Description
Draws the autocorrelation function and/or partial autocorrelation function. The au-
tocorrelation at lag zero is always one, and not included in the graph. The y-axis
is [0, 1] if all autocorrelations are positive, [−1, 1] otherwise. The acf is computed
similarly to the acf() library function.

See also
acf, DrawCorrelogram for an example.

DrawAdjust

DrawAdjust(const iType, ...);

iType in: int, type of adjustment
d1, . . . , d4 in: optional extra arguments, int or double

(defaults to −1 if missing)
No return value.

Description

This function adjust the most recently created graphics object. For example, imme-
diately after a call to Draw(), you can use DrawAdjust to change the line type.
The iType argument specifies the type of adjustment:

ADJ AREA 3D coordinates of the 3D view point of the specified area,
ADJ AREA P pixel coordinates of the specified area,
ADJ AREA X X world coordinates of the specified area,
ADJ AREA Y Y world coordinates of the specified area,
ADJ AREA Z Z world coordinates of the specified area,
ADJ AREAMATRIX area layout (area matrix), boxing and margin,
ADJ AXISCENTRE centre the axis labels between the large tick marks,
ADJ AXISGRID set grid lines for the current axis,
ADJ AXISHIDE hide the axis,
ADJ AXISLABEL set the label rotation, font size and tick mark size
ADJ AXISLINE control the axis line,
ADJ AXISSCALE set the axis scaling type
ADJ COLOR change line type and colour,
ADJ COLORMODEL change display or saved PostScript/PDF colour model,
ADJ INDEX make into index line,
ADJ MINMAX adjust minimum and maximum y value (also affects area),
ADJ PAPERCOLOR adjust the colour of the paper (RGB),
ADJ PAPERSCALE adjust the Y scale of the paper (default is 100%),
ADJ SCALE adjust scale and shift factor for the vector line,
ADJ SYMBOLUSE change symbol/line drawing mode,
ADJ SYMBOL change symbol type and size.

The expected number of arguments depends on the type of adjustment (use −1 to
keep the default value):

DrawAdjust 269

constant d1 d2 d3 d4 d5
ADJ AREA 3D area azimuth elevation distance twist
ADJ AREA P area xmin ymin width height
ADJ AREA X area xmin xmax grow
ADJ AREA Y area ymin ymax grow
ADJ AREA Z area zmin zmax grow
ADJ AREASCOLOR red:0–255 green:0–255 blue:0–255
ADJ AREAMATRIX Y areas X areas box margin
ADJ AXISCENTRE 0,1
ADJ AXISGRID 0,1 colour type
ADJ AXISHIDE 0,1
ADJ AXISLABEL rotation font size tick size
ADJ AXISLINE line at y = 0 above no line no small
ADJ AXISSCALE type scale shift
ADJ COLOR colour type
ADJ COLORMODEL display:0,1 print:0-3
ADJ INDEX 0,1,2 base
ADJ LEGEND area no columns font size resize box all
ADJ MINMAX minimum maximum
ADJ PAPERCOLOR red:0–255 green:0–255 blue:0–255
ADJ PAPERSCALE percentage
ADJ SCALE scale shift
ADJ SYMBOLUSE style
ADJ SYMBOL type size

Some notes and examples:
ADJ AREA 3D expects the area number as the first argument. The azimuth is the

rotation along the Z axis (or, more precisely orthogonal to the line of view).
Elevation is the angle with the X–Y plane, and twist the rotation along the line
of view. Azimuth, elevation and twist are specified in degrees, distance is in area
units. The default values of azimuth, elevation, distance and twist for Fig. 10.9
correspond approximately to: −125, 25, 1800, 0;

ADJ AREA P expects the area number as the first argument.
ADJ AREA X, ADJ AREA Y, ADJ AREA Z all expect the area number as the first ar-

gument. Real-world area adjustment does currently not work properly for 3D
graphs. All have an optional argument grow; set this to one if the area should
only grow if it already has dimensions fixed.

ADJ AREAMATRIX Adjust the rows and columns of the area matrix from the default
For example, when there are two areas, the default layout is 2 × 1. To put the
graphs next to each other:

DrawAdjust(ADJ_AREAMATRIX, 1, 2);

Set the third argument to one to box all areas. The margin size can be changed
with the fourth argument (the default is 640)

ADJ AXIS. . . Unless explicitly created, axes are only made once the graph is dis-
played. Therefore, adjustments to an axis need to be preceeded by an explicit
creation, as for example in:

DrawT(1, x, 1960, 1, 4);
DrawAxisAuto(1, 1); // create a default X axis
DrawAdjust(ADJ_AXISCENTRE, 1);// and centre the dates

270 Chapter 10 Graphics function reference

ADJ AXISGRID Use −1 for default colour and line type:
DrawAxisAuto(0, 1);
DrawAdjust(ADJ_AXISGRID, 1, -1, -1);

ADJ AXISLABEL Rotation changes the label rotation relative to the axis, the value
is 0, 1, or −1 to leave the default. The default font size is 300 and tick size 6;
use −1 to leave the default.

ADJ AXISLINE All arguments are 0, 1, or −1 to leave the default. The second
(‘above’) puts the labels on the opposite side of the axis; ‘ no line’ omits the
base line (leaving the tick marks); ‘no small’ removes the small tick marks.

ADJ AXISSCALE The type for is one of:
AXIS LINEAR – standard axis,
AXIS LOG – log-scale (data is in natural logarithms),
AXIS LOG10 – log10-scale (data is in base-10 logarithms),
AXIS SCALED – scaled: set scale and shift as 2nd and 3rd value,
AXIS DATE – dated: interpret as Julian date/time values,

see Fig. 10.7 for an example.
The following example illustrates AXIS LOG . Logarithms are taken, and then
undone along the axis to show in the original units:

DrawT(0, log(x), 1960, 1, 4);
DrawAxisAuto(0, 0); // default Y axis
DrawAdjust(ADJ_AXISSCALE, AXIS_LOG); // use log scale

ADJ COLOR Colour is 0 . . . 15: 0 = background (white), 1 = foreground (black),
2 . . . 15 are remaining colours. Type is 0 . . . 15. By default, the colour and type
are equal, with settings given in Table 10.4. Use −1 to leave the default.

ADJ COLORMODEL The display mode can be 0 (colour) or 1 (b&w).
The print mode can take the values 0 − 3: 0 = black & white, 1 = black, white
& gray, 2 = gray levels, 3 = colour. This defines the colour model that is used
for saving graphs in PDF and PostScript.

ADJ INDEX Use d1=1 to change to an index line (in that case d2 defaults to 0), and
d1=2 to change to a bar. The base argument is the point to which the index lines
or bars are drawn. When omitted, it is assumed to be zero. An index line is
a single vertical line, centred on the observation values — multiple index lines
will overwrite each other. The bar type is centred on the observation value, and
will make space if multiple bars are drawn. If the bars become too thin, they
will become a single line drawn in the colour, instead of a black outline filled
with the colour.

ADJ MINMAX Sets the minimum and maximum of the previous vector or histogram
object. This implies that the area will encompass these values, and therefore
differs from ADJ AREA Y, which enforces a Y range.

ADJ PAPERCOLOR Sets the color of the paper (not the areas).
ADJ PAPERSCALE This adjust the Y scale as a percentage of the original. To set

half size (50%; an example is given under DrawXYZ):
DrawAdjust(ADJ_PAPERSCALE, 50);

ADJ SYMBOL Symbol types are listed in Table 10.1.
ADJ SYMBOLUSE Style can be as per Table 10.3: 0 = draw line, 1 = draw symbols,

2 = draw both. An example drawing both:
DrawT(0, x, 1960, 1, 4);

DrawAdjust 271

DrawAdjust(ADJ_SYMBOL, PL_CIRCLE, 150);
DrawAdjust(ADJ_SYMBOLUSE, ST_LINESYMBOLS);

Example
A selection of adjustments is used in the following listing, producing Figure 10.3.
Another example is given under DrawCorrelogram(), and DrawXYZ().

. samples/graphics/draw4.ox
#include <oxstd.oxh>
#include <oxdraw.oxh>
main()
{

decl m = rann(30,2);
Draw(0, m’, 0, 1); // draw 2 variables
DrawAdjust(ADJ_MINMAX, -5, 5); // adjust y min/max
DrawTitle(0, "A title"); // set the title
DrawText(0, "Maths: $\\theta_i$", 1, 3); // text at (1,3)

// add text at pixel coordinates
DrawPText(0, "at pixel (1000,3000)", 1000, 3000, 0, 400);

DrawBoxPlot(1, m[][0]’, "Var1"); // draw a box plot
DrawLine(1, 0, -1, 1, 1, 4); //and a line in the plot

// draw a circle, is in area 2 but belongs to area 1
DrawPSymbol(1, 3000, 3000, 4000, 4000, PL_CIRCLE,3);
DrawAxisAuto(1, FALSE); // draw default y axis

// add a second y axis
DrawAxis(1, FALSE, 2, -1, 1, -1, 0.5, 0.1, 0);
DrawAdjust(ADJ_AXISLINE, 0, 1, 1, 0); // adjust axis

// draw a cross plot
DrawXMatrix(2, m[][0]’, "Var1", m[][1]’, "Var2");
DrawAdjust(ADJ_INDEX, 1, -1); // change to index line
DrawLegend(2, 0, 0, 1); // hide the legend

DrawTMatrix(3, m[][0]’, "Var1", 1960, 1, 4); // draw
DrawZ(m[][1]’); // add 2nd var as error bar
DrawLegend(3, 100, 50, 0); // draw the legend
DrawAdjust(ADJ_AREA_X, 3, 1959, 1968); //fix x(world)

// also fix pixel location of area 3
DrawAdjust(ADJ_AREA_P, 3, 9000, 1500, 5000, 3000);

DrawTMatrix(4, m[][1]’, "Var2", 1960, 1, 4, 0, 3);
// draw area 4 on top of area 3

DrawAdjust(ADJ_AREA_P, 4, 9000, 1500, 5000, 3000);
DrawAdjust(ADJ_AREA_X, 4, 1959, 1968); //same x world
DrawAxisAuto(4, TRUE, FALSE); // remove x axis
DrawAxisAuto(4, FALSE, TRUE, ANCHOR_MAX); //move axis
DrawAdjust(ADJ_AXISLINE, TRUE, TRUE); // labels right
DrawLegend(4, 550, 50, 0); // move legend

DrawPText(4, "Var1 on left scale", 9100, 700);
DrawPText(4, "Var2 on right scale", 9100, 400);

DrawAdjust(ADJ_AREAMATRIX, 2, 2); // 5 areas, use 2x2

// leave display setting, but save in black,white&gray
DrawAdjust(ADJ_COLORMODEL, -1, 1);

272 Chapter 10 Graphics function reference

ShowDrawWindow(); // show this concoction
SaveDrawWindow("draw4.pdf");

}
. .

0 5 10 15 20 25 30

-2.5

0.0

2.5

5.0 A title

Maths: θi

at pixel (1000,3000)

-1

0

1

2

-1.0

-0.5

0.0

0.5

1.0

Var1

-2 -1 0 1

-1

0

1

2
Var1

1960 1965

-2.5

0.0

2.5

5.0
Var1 Var2

-1

0

1

2

Var1 on left scale
Var2 on right scale

Var2

Figure 10.3 Illustration of DrawAdjust

DrawAxis 273

DrawAxis, DrawAxisAuto
DrawAxis(const iArea, const iIsXaxis, const dAnchor, const dAxmin,

const dAxmax, const dFirstLarge, const dLargeStep,

const dSmallStep, const iFreq);

DrawAxis(const iArea, const iIsXaxis, const dAnchor, const dAxmin,

const dAxmax, const dFirstLarge, const dLargeStep,

const dSmallStep, const iFreq, const dAnchor2);

DrawAxisAuto(const iArea, const iIsXaxis, ...);

DrawAxisAuto(const iArea, const iIsXaxis, const fShow,

const iAnchor, const dAnchor, const dAnchor2);
iArea in: area index
iIsXAxis in: 1: X axis, 0: Y axis, 2: Z axis
dAnchor in: if iAnchor=ANCHOR USER: anchor of the axis

(Y location of X , X location of Y and Z axis)
dAnchor2 in: if iAnchor=ANCHOR USER: anchor of the 3D

axis (Z location of X and Y axis, Y location
of Z)

dAxmin in: axis minimum
dAxmax in: axis maximum
dFirstLarge in: location of first large tick
dLargeStep in: step size between large ticks
dSmallStep in: step size between small ticks
iFreq in: frequency (for time series X-axis, set to 0 other-

wise)
fShow in: TRUE: show the axis
iAnchor in: axis anchor location, ANCHOR MIN: at minimum,

ANCHOR MAX: at maximum, ANCHOR USER: at
dAnchor

No return value.
Description

DrawAxis draws an axis, fully specified.
DrawAxisAuto draws an axis with automatic design.

See also
DrawAdjust (for examples)

Example
. samples/drawaxis log10.ox
#include <oxstd.oxh>
#include <oxdraw.oxh>
main()
{

decl x = 1000 * ranu(1000, 1);
decl y = x + 10 * rann(1000, 1);

// plot 1: normal X-axis (taking log10 of data in log10)
DrawX(0, y’, log10(x)’);
// Put an unusual Y-axis in the graph
DrawAxis(0, 0, 1, 100, 1000, 100, 100, 0, 0);

274 Chapter 10 Graphics function reference

// plot 1: log10 axis (taking log10 of data in log10)
DrawX(1, y’, log10(x)’);
// add axis so that it can be manipulated
DrawAxisAuto(1, 1);
// now change it to log10
DrawAdjust(ADJ_AXISSCALE, AXIS_LOG10);

// change layout to 1x2, boxed
DrawAdjust(ADJ_AREAMATRIX, 1, 2, 1);
// and shrink
DrawAdjust(ADJ_PAPERSCALE, 50);

// and show
ShowDrawWindow();

}
. .

100
200
300
400
500
600
700
800
900

1000

0.5 1.0 1.5 2.0 2.5 3.0 10 20 30 100 200 1000

0

500

1000

Figure 10.4 PDF file from drawaxis log10.ox

DrawBoxPlot 275

DrawBoxPlot
DrawBoxPlot(const iArea, const mY, const sY);

DrawBoxPlot(const iArea, const vY, const sY, const iIndex);

iArea in: int, area index
mY in: k × T matrix, each row is a new plot (needs T > 5)
sY in: string, variable name, or array of strings (k > 1)
iIndex in: int, line index, see Table 10.4, (optional, default is 2).

No return value.
Description

Draws a box plot of the data in the specified area.
A box plot shows the distribution of a variable in terms of its quartiles, labelled
Q1, Q2, Q3 (the 25%, 50% and 75% quartiles). Define the interquartile range as
IQR = 1.5(Q3 −Q1). The box plot consists of the following elements:

• a box, with horizontal lines at Q1, Q2 (the median) and Q3;
• a vertical line from Q1 − IQR to Q3 + IQR (omitted inside the box);
• individual observations: all observations outside the (Q1 − IQR,Q3 + IQR)

range, plus the two observations on either end which just fall inside this range.
See also

DrawAdjust (for an example)

DrawCorrelogram
DrawCorrelogram(const iArea, const mY, const sY, const cLag);

DrawCorrelogram(const iArea, const mY, const sY, const cLag,

const iIndex);

iArea in: int, area index
mY in: k × T matrix, each row is a new plot
sY in: string, variable name, or array of strings (k > 1)
cLag in: int, highest lag to be used in correlogram
iIndex in: int, line index, see Table 10.4, (optional, default is 2).

No return value.
Description

Draws a correlogram which plots the autocorrelation function. The autocorrelation
at lag zero is always one, and not included in the graph. The y-axis is [0, 1] if all
autocorrelations are positive, [−1, 1] otherwise. The acf is computed differently
from that in the acf() library function. The difference is that DrawCorrelogram
uses the running mean:

r̂∗j =

∑T
t=j+1 (xt − x̄0) (xt−j − x̄j)√∑T

t=j+1 (xt − x̄0)
2∑T

t=j+1 (xt−j − x̄j)
2
.

Here x̄0 = 1
T−j

∑T
t=j+1 xt is the sample mean of xt, t = j + 1, . . . , T , and x̄j =

1
T−j

∑T
t=j+1 xt−j is the sample mean of xt−j , so that r̂∗j corresponds to a proper

sample correlation coefficient. The difference with the definition of the sample
autocorrelations in (8.1) tends to be small, and vanishes asymptotically.

276 Chapter 10 Graphics function reference

data

0 50 100 150 200

-5.0

-2.5

0.0

2.5

5.0
data DrawCorrelogram

0 5 10

0.25

0.50

0.75

1.00 Correlogram
DrawCorrelogram

acf

2 4 6 8 10

-0.5

0.0

0.5

1.0
acf ACF-DrawAcf

0 5 10

0.25

0.50

0.75

1.00
ACF-DrawAcf

Figure 10.5 Autocorrelation functions

See also
acf, DrawAcf to draw the standard ACF.

Example
The following example compares the two correlograms, with the bottom graph hold-
ing the standard ACF, computed using the acf() function.
. samples/graphics/draw5.ox
#include <oxstd.oxh>
#include <oxdraw.oxh>
main()
{

decl lag = 9;
decl m = cumulate(rann(200,1), 0.9);

DrawMatrix(0, m’, "data", 0, 1);
DrawCorrelogram(1, m’, "DrawCorrelogram", lag);

decl macf = acf(m, lag); // compute standard ACF
DrawMatrix(2, macf[1:][]’, "acf", 1, 1);// draw the ACF
DrawAdjust(ADJ_INDEX, 1); // change to index line
DrawAdjust(ADJ_MINMAX, -1, 1); // set y range to [-1 1]

DrawAcf(3, m’, "DrawAcf", lag);

ShowDrawWindow();
}
. .

DrawDensity 277

DrawDensity
DrawDensity(const iArea, const vY, const sY, ...);

DrawDensity(const iArea, const vY, const sY, const fDens,

const fHist, const fNormal, BOOL fCdf, BOOL fStand,

const cBar, const iIndex);

iArea in: int, area index
mY in: k × T matrix, each row is a new plot
sY in: string, variable name, or array of strings (k > 1)
fDens in: int, TRUE: draw estimated density (optional, default)
fHist in: int, TRUE: draw histogram (optional, not drawn by default)
fNormal in: int, TRUE: add the normal density with same mean and vari-

ance for reference (optional, not drawn by default)
fCdf in: int, TRUE: plot CDF in separate area (optional, not drawn by

default); this is drawn as a QQ plot against the normal with
same mean and variance (unless fStand=TRUE)

fStand in: int, TRUE: use standardized data (optional, default uses orig-
inal data)

cBar in: int, number of bars (0: use default; optional argument)
iIndex in: int, line index for density, see Table 10.4, (optional, default

is 2).
No return value.
Description

Draws the histogram and/or density of the data in the specified area. When fNormal
is TRUE, a normal density with the same mean and variance as the data will be drawn.
The density estimate is based on a kernel density estimation, with Gaussian ker-
nel, and optimal bandwidth (if the data are indeed from a normal density) of
1.06σ̂T−0.2. The density is estimated at 128 points using the fast Fourier trans-
form due to B.W. Silverman (see Silverman, 1986) and Applied Statistics algorithm
AS 176). Also see the OxMetrics book.

See also
samples/lib/DensEst.ox (which gives examples of the use of density estimation
code, in comparison with DrawDensity),
DrawHistogram.

278 Chapter 10 Graphics function reference

DrawHistogram
DrawHistogram(const iArea, const vBar, ...);

DrawHistogram(const iArea, const vBar, const dMin, const dStep,

const iIndex, const iColorIn);

iArea in: int, area index
vBar in: k × T matrix with bar heights, each row is a new plot
dMin in: double, first X-coordinate of histogram (optional argument,

default is 1)
dStep in: double, bar step size (optional argument, default is 1)
iIndex in: int, line index for outline, see Table 10.4, (optional, default

is 2).
iColorIn in: int, colour index for inside of bars, see Table 10.4, (optional

argument, default is 0: white).
No return value.
Description

Draws a histogram when the data is already in histogram format, i.e. vBar contains
the bar heights.

See also
DrawDensity

DrawLegend
DrawLegend(const iArea, const iOffsX, const iOffsY,

const fHidden);

iArea in: area index
iOffsetX in: X pixel offset from top left of area
iOffsetY in: Y pixel offset from top left
fHidden in: TRUE: hide the legend

No return value.
Description

DrawLegend determines the location of the legend. By default, a legend is drawn
in the top left-hand corner, with a scale that adjusts automatically to the area size.
DrawLegend can also be used to hide the legend. The content of the legend is
determined by the variable names that are used when drawing vectors.

See also
DrawAdjust (for an example)

DrawLine 279

DrawLine
DrawLine(const iArea, const dX1, const dY1, const dX2, const dY2,

const iIndex);

DrawLine(const iArea, const dX1, const dY1, const dZ1,

const dX2, const dY2, const dZ2, const iIndex);

iArea in: area index
dX1,dY1 in: real-world coordinates of starting point
dX2,dY2 in: real-world coordinates of end point
dZ1,dZ2 in: real-world Z coordinates for symbol in 3D graph
iIndex in: int, line index for first row, see Table 10.4.

No return value.
Description

DrawLine draws a line between the specified coordinates.
See also

DrawAdjust (for an example)

DrawMatrix
DrawMatrix(const iArea, const mYt, const asY, const dXfirst,

const dXstep, ...);

DrawMatrix(const iArea, const mYt, const asY, const dXfirst,

const dXstep, const iSymbol, const iIndex);

iArea in: int, area index
mYt in: m× T matrix with m rows of data
asY in: array of strings (holds variable names), or 0 (no names), or a

string (when only one variable to graph)
dXfirst in: double, X-value of first observation, x
dXstep in: double, gap between X-values, dx
iSymbol in: int, 0: draw line, 1: draw symbols, 2: draw both (optional

argument, default is 0), see Table 10.3.
Or vector with value for each row of data.

iIndex in: int, line index for first row, see Table 10.4, (optional, default
is 2). Each subsequent row will have the next index.
Or vector with value for each row of data.

No return value.
Description

This is a more flexible version of the Draw() function. DrawMatrix draws the m
variables in the rows of mYt. The X variable consists of evenly spaced observations
x, x+ dx, x+ 2dx, x+ 3dx,
The following table gives the default settings for each line index. Note that index 0
is the background colour, and 1 the foreground colour.

280 Chapter 10 Graphics function reference

DrawPLine, DrawPSymbol, DrawPText
DrawPLine(const iArea, const iX1, const iY1, const iX2,

const iY2, const iIndex);

DrawPSymbol(const iArea, const iX1, const iY1, const iX2,

const iY2, const iSymType, const iIndex);

DrawPText(const iArea, const sText, const iPx1,

const iPy1, ...);

DrawPText(const iArea, const sText,const iPx1,const iPy1,

const iFontNo, const iFontSize, const iTitle, const iRotation);

iX1,iY1 in: pixel coordinates
iX2,iY2 in: pixel coordinates

No return value.
Description

These are pixel coordinate equivalents of DrawLine, DrawSymbol and DrawText

respectively. See under those functions for a description of the remaining argu-
ments.

DrawQQ
DrawQQ(const iArea, const mY, const sY, const iDens,

const df1, const df2);

DrawQQ(const iArea, const mY, const sY, const iDens,

const df1, const df2, const iIndex);

iArea in: int, area index
mY in: k × T matrix, each row is a new plot
sY in: string, variable name, or array of strings (k > 1)
iDens in: int, one of: QQ CHI, QQ F, QQ N, QQ T, QQ U

df1 in: double, first parameter for distribution
df2 in: double, second parameter for distribution
iIndex in: int, line index for first row, see Table 10.4, (optional, default

is 2).
No return value.
Description

Draws a QQ plot. Each row of mY would normally hold critical values which are
hypothesized to come from a certain distribution. This function then draws a cross
plot of these observed values (sorted), against the theoretical quantiles. The 45o line
is drawn for reference (the closer the cross plot to this line, the better the match).
The following distributions are supported:
QQ CHI χ2(df1),
QQ F F(df1, df2),
QQ N N(0, 1),
QQ N SE N(0, 1) with pointwise asymptotic 95% standard error

bands, as derived in Engler and Nielsen (2009),
QQ T t(df1),
QQ U Uniform(0, 1), resulting in a quantile plot.

DrawSpectrum 281

DrawSpectrum
DrawSpectrum(const iArea, const mY, const sY, const iOrder);

DrawSpectrum(const iArea, const mY, const sY, const iOrder,

const iIndex);

iArea in: int, area index
mY in: k × T matrix, each row is a new plot
sY in: string, variable name, or array of strings (k > 1)
iOrder in: int, lag truncation parameter m
iIndex in: int, line index for first row, see Table 10.4, (optional, default

is 2).
No return value.
Description

Draws the estimated spectral density, which is a smoothed function of the autocor-
relations rj . The graph corresponds to the results computed with the periodogram
library function using imode = 2, and cpoints = 128. Note that the horizontal
axis in the graph is scaled by π, thus transforming the scale from [0, π] to [0, 1].

See also
periodogram

var

0.0 0.5 1.0

0.05

0.10

0.15

0.20

Spectral density (SDF) using DrawSpectrum()
var

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.125

0.150

0.175

0.200

0.225 SDF using periodogram(), imode = 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

20

40

Periodogram without truncation

0.0 0.5 1.0 1.5 2.0 2.5 3.0

10

20

30

Smoothed periodogram without truncation

Figure 10.6 Periodograms and spectral density estimates

Example
. .samples/draw6.ox
#include <oxstd.oxh>
#include <oxfloat.oxh>

282 Chapter 10 Graphics function reference

#include <oxdraw.oxh>
main()
{

decl m = rann(100,1), cp = 128;

DrawSpectrum(0, m’, "var", 10);
DrawTitle(0, "Spectral density (SDF) using DrawSpectrum()");

Draw(1, periodogram(m,10, cp,2)’, 0, M_PI / (cp-1));
DrawTitle(1, "SDF using periodogram(), imode = 2");

Draw(2, periodogram(m,100,cp,0)’, 0, M_PI / (cp-1));
DrawTitle(2, "Periodogram without truncation");

Draw(3, periodogram(m,100,cp,1)’, 0, M_PI / (cp-1));
DrawTitle(3, "Smoothed periodogram without truncation");

ShowDrawWindow();
}
. .

produces a graph like Fig. 10.6.

DrawSymbol
DrawSymbol(const iArea, const dX1, const dY1, const dX2,

const dY2, const iSymType, const iIndex);

DrawSymbol(const iArea, const dX1, const dY1, const dZ1, const dX2,

const dY2, const dZ2, const iSymType, const iIndex);

iArea in: area index
dX1,dY1 in: real-world coordinates, lower-left corner of

bounding box
dX2,dY2 in: real-world coordinates, upper-right corner of

bounding box
dZ1,dZ2 in: real-world Z coordinates for symbol in 3D graph
iSymType in: symbol type, see Table 10.1
iIndex in: int, line index for first row, see Table 10.4, (op-

tional, default is 2).
No return value.
Description

DrawSymbol draws a symbol in the specified bounding box.
See also

DrawAdjust (for an example)

DrawT 283

DrawT
DrawT(const iArea, const mYt, const mnYear, const mnPeriod,

const iFreq);

DrawT(const iArea, const mYt, const vDates, 0, 0);
iArea in: int, area index
mYt in: m× T matrix with m y variables
mnYear in: int, year of first observation
mnPeriod in: int, period of first observation
iFreq in: int, frequency of observations

vDates in: 1×T matrix with Julian dates (and/or times, see
dayofcalendar and timeofday)

No return value.
Description

Draws m variables in the specified area against time. Each variable is drawn by
linking up the points. The first line index is 2.

DrawText, DrawTitle
DrawText(const iArea, const sText, const dX1, const dY1, ...);

DrawText(const iArea, const sText, const dX1, const dY1,

const iFontNo, const iFontSize, const iTitle, const iRotation,

const dZ1);

DrawTitle(const iArea, const sText);
iArea in: area index
sText in: text to draw, this may include LATEX-style formatting
dX1,dY1 in: real-world coordinates of text anchor
iFontNo in: font number (0 for first font; use -1 for the default font)
iFontSize in: font size (e.g. 330; use -1 for the default size)
iTitle in: TEXT TEXT or 0: normal text, else is graph title (coordinates

are ignored):
TEXT TITLE – graph title
TEXT XLABEL – label along X-axis
TEXT YLABEL – label along Y -axis
TEXT ZLABEL – label along Z-axis

iRotation in: rotation (in degrees, default is 0), only effective if the iTitle
argument is zero

dZ1 in: real-world Z coordinate of text anchor (for text in 3D graphs;
default is 0)

No return value.
Description

DrawText draws text at the specified location. There is optional control of font and
font size.
For a summary of the LATEX-style features, see the OxMetrics book. Note that the
forward slash for LATEX commands must be doubled, for example:

284 Chapter 10 Graphics function reference

DrawText(0, "$\\leftarrow\\arrowext$", 1962, 1, -1,
-1, 0, 45);

DrawTitle draws text at the title location. This corresponds to

DrawText(iArea, sText, 0, 0, -1, -1, TEXT_TITLE).

Text can also be rotated, by specifying the angle in degrees. This will not work well
for multiple line text blocks.

See also
DrawAdjust (for an example)

DrawTMatrix

DrawTMatrix(const iArea, const mYt, const asY, ...);

DrawTMatrix(const iArea, const mYt, const asY, const mnYear,

const mnPeriod, const iFreq, const iSymbol, const iIndex);

DrawTMatrix(const iArea, const mYt, const asY, const vDates, ...);

DrawTMatrix(const iArea, const mYt, const asY, const vDates,

0, 0, const iSymbol, const iIndex);

iArea in: int, area index
mYt in: m× T matrix with m y variables
asY in: array of strings (holds variable names), or 0 (no names), or a

string (when only one variable to graph)
mnYear in: int, year of first observation (optional argument, default is 1)
mnPeriod in: int, period of first observation (optional argument, default is

1)
iFreq in: int, frequency of observations (optional argument, default is

1)
iSymbol in: int, 0: draw line, 1: draw symbols, 2: draw both (optional

argument, default is 0), see Table 10.3
Or vector with value for each row of data.

iIndex in: int, line index for first row, see Table 10.4, (optional, default
is 2) Each subsequent row will have the next index.

Or vector with value for each row of data.
vDates in: 1 × T matrix with Julian dates (and/or times, see

dayofcalendar and timeofday)
No return value.
Description

This is a more flexible version of the DrawT() function. Draws m variables in the
specified area against time. See under DrawMatrix for the default settings for each
line index.
See Modelbase::DbDrawTMatrix for a version that uses the database sample in-
formation for the horizontal axis.

Example
The code of draw10.ox draws a data against the Julian time values which are rep-
resenting dates (Fig. 10.7b), and against time (Fig. 10.7c).

DrawTMatrix 285

Var1 Var2

1999 2000 2001 2002 2003 2004 2005 2006

0

2
Draw against fixed frequency date

Var1 Var2

Var1 Var2

2005-11-27 12-4 12-11 12-18 12-25 2006-1-1 1-8 1-15

0

2
Draw the X axis with dates

Var1 Var2

Var1 Var2

00:00 06:00 12:00 18:00 00:00 06:00

0

2
Draw the X axis with times

Var1 Var2

Figure 10.7 DrawTMatrix example with dates and times

. samples/draw10.ox
#include <oxstd.oxh>
#include <oxdraw.oxh>

main()
{

decl c = 30, m = rann(30,2);

decl dates = dayofcalendar(2005, 12, 1) + range(0, 300);
// drop weekends
decl drop = dayofweek(dates) .== 1 .|| dayofweek(dates) .== 7;
// drop period between christmas and newyear
drop = drop .|| (dates .>= dayofcalendar(2005, 12, 25) .&&

dates .<= dayofcalendar(2006, 1, 1));

// drop those dates, and get c dates
dates = deleteifc(dates, drop)[: c - 1];
println("%C", dates’);

DrawTitle(0, "Draw against {\it fixed frequency date}");
DrawTMatrix(0, m’, {"Var1", "Var2"}, 1999, 1, 4);

DrawTitle(1, "Draw the X axis with {\it dates}");
DrawTMatrix(1, m’, {"Var1", "Var2"}, dates, 0, 0, 2);

DrawTitle(2, "Draw the X axis with {\it times}");
DrawTMatrix(2, m’, {"Var1", "Var2"}, range(0, c - 1) / 24);
ShowDrawWindow();

}
. .

286 Chapter 10 Graphics function reference

DrawX
DrawX(const iArea, const mYt, const vX);
iArea in: int, area index
mYt in: m× T matrix with m y variables
vX in: 1× T matrix with x variable

No return value.
Description

Draws m y variables in the specified area against an x variable. Each point is
marked, but the points are not linked, resulting in a cross plot. The first line index
is 2.

DrawXMatrix
DrawXMatrix(const iArea, const mYt, const asY, const vX, const sX,

...);

DrawXMatrix(const iArea, const mYt, const asY, const vX, const sX,

const iSymbol, const iIndex);

iArea in: int, area index
vX in: 1× T matrix with x variable
iSymbol in: int, 0: draw line, 1: draw symbols, 2: draw both (optional

argument, default is 0).
Or vector with value for each row of data.

iIndex in: int, line index for first row, see Table 10.4, (optional, default
is 2), see Table 10.3. Each subsequent row will have the next
index.
Or vector with value for each row of data.

No return value.
Description

This is a more flexible version of the DrawX() function. Draws m variables in the
specified area against an x variable See under DrawMatrix for the default settings
for each line index and a description of the remaining arguments.

Example
The code of draw11.ox draws a data against the Julian time values which are rep-
resenting dates (Fig. 10.8b).

. samples/draw11.ox
#include <oxstd.oxh>
#include <oxdraw.oxh>

main()
{

decl c = 30, m = rann(30,2);

decl dates = dayofcalendar(2005, 12, 1) + range(0, 300);
// drop weekends
decl drop = dayofweek(dates) .== 1 .|| dayofweek(dates) .== 7;
// drop period between christmas and newyear

DrawXMatrix 287

Var1 Var2

0 5 10 15 20 25 30

0

2
Draw against the observation index

Var1 Var2

Var1 Var2

2005-11-27 12-4 12-11 12-18 12-25 2006-1-1 1-8 1-15

0

2
Draw the X axis with dates

Var1 Var2

Figure 10.8 DrawXMatrix example with dates and times

drop = drop .|| (dates .>= dayofcalendar(2005, 12, 25) .&&
dates .<= dayofcalendar(2006, 1, 1));

// drop those dates, and get c dates
dates = deleteifc(dates, drop)[: c - 1];

println("%C", dates’);

DrawTitle(0, "Draw against the {\it observation index}");
DrawTMatrix(0, m’, {"Var1", "Var2"}, 1, 1, 1);

DrawTitle(1, "Draw the X axis with {\it dates}");
DrawAxisAuto(1, 1);
DrawAdjust(ADJ_AXISSCALE, AXIS_DATE);
DrawXMatrix(1, m’, {"Var1", "Var2"}, dates, "", 2);

DrawAdjust(ADJ_PAPERSCALE, 70);
DrawAdjust(ADJ_AREAMATRIX, 2, 1);

ShowDrawWindow();
}
. .

288 Chapter 10 Graphics function reference

DrawXYZ

DrawXYZ(const iArea, const vX, const vY, const mZ, ...);

DrawXYZ(const iArea, const vX, const vY, const mZ,

const iMode, const sX, const sY, const sZ,

const iPalette, const iIndex);

iArea in: int, area index
vX in: 1× k matrix with X variable
vY in: 1× n matrix with Y variable
mZ in: k × n matrix with Z variable, heights above XY plane

or in: 1 × n = k matrix with Z coordinates for points (X,Y, Z),
creates rough approximating surface (scatter format)

iMode in: int, type of plot (optional argument):
−1: triangulation (only for scatter format)
0: surface plot only (default)
1: unsupported: surface with contours on ground level
2: 2-dimensional contour plot

sX in: string, name of X variable (optional argument)
sY in: string, name of Y variable (optional argument)
sZ in: string, name of Z variable (optional argument)
iPalette in: int, palette index, see Table 10.5, (optional, default is 2: red).
iIndex in: int, line index for mesh, see Table 10.4, (optional, default is

1: black).
No return value.
Description

This function draws a 3-dimensional surface.
Example

The first example shows a simple 3-dimensional plot of a bivariate independent nor-
mal density (without the normalizing constant). In first plot of the second example,
the tabular format is different for x and y: x is 1× 61, y is 1× 14, z is 61× 14. The
second plot of Fig. 10.10 is drawn from a random scatter: the X,Y, Z vectors have
the same dimension. It keeps the azimuth, elevation and distance at the approximate
default values, but adds a twist of about 25◦.
See samples/draw8contour.ox for an example involving contour plots.
. .samples/draw7.ox
#include <oxstd.oxh>
#include <oxdraw.oxh>

main()
{

decl x, y, z;
x = y = range(-30,30,3) / 10;
z = exp(-sqr(x’) / 2) .* exp(-sqr(y) / 2);
DrawXYZ(0, x, y, z);
DrawAdjust(ADJ_PAPERSCALE, 60);
ShowDrawWindow();

}
. .

DrawXYZ 289

-2 -1 0 1 2 3

-2.5

0.0
2.5

0.
5

1.
0

Figure 10.9 Three-dimensional plot

. .samples/draw8.ox
#include <oxstd.oxh>
#include <oxdraw.oxh>

main()
{

decl x = range(-30,30,1) / 10; // k row vector
decl y = quann(range(1,14) / 15) * 2; // n row vector
decl z = exp(-sqr(x’) / 2) .* exp(-sqr(y) / 2); // (kxn) table
DrawXYZ(0, x * 10, y, z, 0, "X", "Y", "Z");

x = (ranu(500, 1) - 0.5) * 6;
y = (ranu(500, 1) - 0.5) * 6;
z = exp(-sqr(x) / 2) .* exp(-sqr(y) / 2); // vector!
DrawXYZ(1, x, y, z);
DrawAdjust(ADJ_AREA_3D, 1, -125, 25, 1000, 25);
DrawAdjust(ADJ_PAPERSCALE, 60);
ShowDrawWindow();

}
. .

X
Y

Z

-25
0

25
-2.5

0.0

2.5

0.
5

1.
0

-2.5 0.0 2.5

-2.5

0.0

2.5

0.
5

1.
0

Figure 10.10 Three-dimensional plot

290 Chapter 10 Graphics function reference

DrawZ

DrawZ(const vZ, ...);

DrawZ(const vZ, const sZ, const iMode, const dFac, const iIndex);

vZ in: 1× T matrix
sZ in: Z variable name (optional argument)
iMode in: type of Z variable (optional argument)
dFac in: bar/band factor (optional argument, 2.0 is default)
iIndex in: int, line index for first row, see Table 10.4, (optional, default

is 2).
No return value.
Description

DrawZ adds a Z component to the most recent graphics object. DrawZ should be
used immediately after a call to one of the draw functions Draw, DrawMatrix,
DrawX, etc.). The iMode argument can have one of the following values:

ZMODE SYMBOL use values as symbol size,
ZMODE VALUE draw value as text,
ZMODE BAR draw error bars (the default),
ZMODE BAND draw error bands,
ZMODE FAN draw error fans,
ZMODE HILO draw high-low plot,
ZMODE 3D draw 3-D points.

To draw a sequence of 3D points, use for example:
DrawX(0, y, x);
DrawZ(z, "Z", ZMODE_3D);

See also
DrawAdjust (for an example)

SaveDrawWindow

SaveDrawWindow(const sFilename);

sFilename in: valid file name

No return value.
Description

Saves the current graph to the specified file. The file format for saving is derived
from the extension. The following formats are supported:

extension format
.eps Encapsulated PostScript;
.gwg OxMetrics graphics file;
.pdf PDF: Portable document format;
.png Portable Network Graphics, which is a bitmap format;
.ps PostScript;
.svg SVG, supported by most browsers.

SetDraw 291

See the OxMetrics book for a description of these formats. When saving in a format
other than .gwg, the .gwg file is automatically saved as well (using the same file
name with .gwg appended).

SetDraw

SetDraw(const iOption, ...);

SetDraw(const iOption, const i1, const i2, const i3, const i4,

const i5);

iOption in: int, option to set
i1,. . . ,i5 in: int, optional extra arguments

No return value.

Description
This function changes the default settings used in graphics. When run via Ox-
Metrics, this will affect the persistent OxMetrics settings. Check first under
DrawAdjust if the required customization is available there. The following con-
stants may be used for iOption:

option changes option changes
SET AXISFORMAT axis label format SET LEGENDHIDE legend hiding
SET AXISLINE axis options SET LEGENDRESIZE resize legends
SET AXIS axis fonts/ticks SET LEGEND legend style
SET BOX box and grid SET LINEBWG b&w line settings
SET BWG b&w setting SET LINE line settings
SET COLORMODEL PostScript/PDF model SET MARGIN paper margins
SET COLOR colour settings SET PALETTE MAX palette max colour
SET DEFAULT reset all defaults SET PALETTE MIN palette min colour
SET FONT font SET PAPERCOLOR paper colour
SET GRID grid style SET PRINTPAGE PostScript paper
SET HISTOGRAM bar colours SET SYMBOL symbol settings
SET LEGENDFONTSIZE legend font size SET XYSTYLE labels along axes

The following table lists the integer arguments for each option, with the range of
possible values. If no range is given, the argument is a size in pixel coordinates (see
§10.1).

292 Chapter 10 Graphics function reference

option i1 i2 i3 i4 i5
SET AXISFORMAT width:8 precision:6 same prec:0,1 lead zero:0,1
SET AXISLINE no X-line no Y-line center dates no small Y
SET AXIS fontsize step tick
SET BOX box:0–1 X-grid:0–1 Y-grid:0–1
SET BWG lineno:0–15 red:0–255 green:0–255 blue:0–255
SET COLORMODEL model:0–3
SET COLOR lineno:0–15 red:0–255 green:0–255 blue:0–255
SET FONT fontno:0–3 fontsize
SET GRID color:0–15 type:0–15
SET HISTOGRAM inside:0–15 outside:0–15
SET LEGENDFONTSIZE fontsize
SET LEGENDHIDE hide:0–1
SET LEGENDRESIZE resize:0,1
SET LEGEND boxed:0–1 columns

option i1 i2 i3 i4 i5
SET LINEBWG lineno:0–15 linetype:0–4 width on off
SET LINE lineno:0–15 linetype:0–4 width on off
SET MARGIN left top
SET PALETTE MAX lineno:0–7 red:0–255 green:0–255 blue:0–255
SET PALETTE MIN lineno:0–7 red:0–255 green:0–255 blue:0–255
SET PAPERCOLOR red:0–255 green:0–255 blue:0–255
SET PRINTPAGE papertype:0–2 orientation:0–1 X-size Y-size
SET SYMBOL lineno:0–15 symtype:0–4 size
SET XYSTYLE 2D-style:0,1 3D-style:0,1

For symtype see Table 10.1 and for linetype see Table 10.2. All SET AXISLINE

arguments are 0 or 1. Paper, orientation and model arguments for SET PRINTPAGE

and SET COLORMODEL are:

papertype orientation model
PAGE A4 PAGE PORTRAIT 0 black & white
PAGE LETTER PAGE LANDSCAPE 1 black, white, gray
PAGE USER 2 gray

3 color

Papertype and ori-

entation are used when saving as a PostScript (.ps) file. The colour model is used
for all PostScript and PDF files.

Example
. .samples/draw3.ox
#include <oxstd.oxh>
#include <oxdraw.oxh>
main()
{

decl m = rann(30,2);

Draw(0, m’, 0, 1);
DrawMatrix(1, m’, {"Var1", "Var2"}, 0, 1, 2);
DrawT(2, m’, 1960, 1, 4);
DrawXMatrix(3, m’, {"Var1", "Var2"}, m’, "Var1", 1, 3);

SetDraw 293

ShowDrawWindow();
SetDraw(SET_PRINTPAGE, PAGE_LETTER, PAGE_PORTRAIT);
SaveDrawWindow("draw3.ps");

}
. .

294 Chapter 10 Graphics function reference

SetDrawWindow
SetDrawWindow(const sTitle);

sTitle in: string, name of window
No return value.
Description

This function is only relevant when interacting with OxMetrics otherwise it does
nothing. It sets the name of the OxMetrics window in which the graphs of the Ox
program appear to sTitle.

SetTextWindow
SetTextWindow(const sTitle);

sTitle in: string, name of window
No return value.
Description

This function is only relevant when interacting with OxMetrics otherwise it does
nothing. It sets the name of the OxMetrics window in which the output (from the
print() function) of the Ox program appears to sTitle.

ShowDrawWindow
ShowDrawWindow();

No return value.
Description

Shows the drawing. Note that in some implementations the graphs cannot be dis-
played. Then a message is printed (SaveDrawWindow() will still work in that
case!).
A call to ShowDrawWindow also clears the drawing buffer, so does not need to
be followed by a call to CloseDrawWindow. Therefore, two subsequent calls to
ShowDrawWindow first show, then clear the graph from the active window.

Chapter 11

Packages

Packages are extensions and additions to the Ox language. Whereas the core of Ox
contains the general purpose functions, packages often solve a specific problem or are
ports of existing code to Ox. Sometimes part of the code is available through a Dy-
namic Link Library (DLL) with accompanying header file. Many packages are third
party contributions to Ox, and documented and maintained by their respective authors.
The Ox web site maintains an up to date list of available packages. This chapter only
describes the packages which are part of the standard release of Ox.

295

296 Chapter 11 Packages

11.1 Arma package

The Arma package implements functions which are commonly used in autoregressive-
moving average models. The Arma package requires the header file arma.h. Note that
the Arma package uses the convention of writing the AR and MA coefficients on the
right-hand side with a positive sign.

arma0
arma0(const ma, const vp, const cp, const cq);

ma in: T × n matrix A
vp in: 1 × s matrix with autoregressive coefficients ϕ1, ϕ2, . . . , ϕp

followed by the moving average coefficients θ1, θ2, . . . , θq ,
s ≥ p+ q

cp in: int, no of autoregressive coefficients (could be 0)
cq in: int, no of moving average coefficients (could be 0)

Return value
Returns the residual from applying the ARMA(p, q) filter to each column of A. The
result has the same dimensions as ma. The first p rows of the return value will be
zero.

Description
For a column a = (a0, . . . , aT−1)

′ of A, this function computes (see e.g. Harvey,
1993, §3.3):

ϵt = 0 t = 0, . . . , p− 1,
ϵt = at − ϕ1at−1 . . .− ϕpat−p − θ1ϵt−1 . . .− θqϵt−q t = p, . . . , T − 1,

using ϵt = 0 for t < 0. For example when p = 1 and q = 2:

ϵ0 = 0
ϵ1 = a1 − ϕ1a0 − θ1ϵ0
ϵ2 = a2 − ϕ1a1 − θ1ϵ1 − θ2ϵ0
ϵt = at − ϕ1at−1 − θ1ϵt−1 − θ2ϵt−2 t = p, . . . , T − 1.

Comparison with the cumulate function shows that in the univariate case
cumulate(y,a0,a1) corresponds to arma0(y,-(a0~a1),0,2).

See also
armagen, armaforc, armavar, diff0, diffpow, pacf

Example
#include <oxstd.oxh>
#include <arma.oxh>
main()
{

decl mx = <1:5>’;
print(arma0(mx,<0.5, 0.5>, 1, 1) ~ arma0(mx,<0.5>, 0, 1));

}

produces

armaforc 297

0.00000 1.0000
1.5000 1.5000
1.2500 2.2500
1.8750 2.8750
2.0625 3.5625

armaforc
armaforc(const mx, const vp, const cp, const cq, ...);

armaforc(const mx, const vp, const cp, const cq,

const ma, const me);

mx in: H × n or H × 1 matrix X , fixed part of forecasts
vp in: 1 × s matrix with autoregressive coefficients ϕ1, ϕ2, . . . , ϕp

followed by the moving average coefficients θ1, θ2, . . . , θq ,
s ≥ p+ q

cp in: int, no of autoregressive coefficients (could be 0)
cq in: int, no of moving average coefficients (could be 0)
ma in: (optional argument) T ×nmatrixA, pre-forecast data values

(default is zero)
me in: (optional argument) T × n matrix E, pre-forecast residual

values (default is zero)
Return value

Returns the forecasts from an ARMA(p, q) model, as an H × n matrix. The same
model is applied to each column of mx.

Description
For a column x = (x0, . . . , xH−1)

′ of X , as the first argument, and assuming the
ma and me arguments are omitted, this function computes:

â0 = x0
â1 = x1 + ϕ1â0
â2 = x2 + ϕ1â1 + ϕ2â0
. . .
âh = xh + ϕ1âh−1 + . . .+ ϕpâh−p h = p, . . . ,H − 1,

The ma argument can be used to specify actual values a = (a0, . . . , aT−1)
′, which

are used in the beginning stages of the forecasting, e.g. when p = 2:

â0 = x0 + ϕ1aT−1 + ϕ2aT−2

â1 = x1 + ϕ1â0 + ϕ2aT−1

â2 = x2 + ϕ1â1 + ϕ2â0
âh = xh + ϕ1âh−1 + ϕ2âh−2 h = 2, . . . ,H − 1,

Note that the actual values are taken from the end of ma: the first forecast will use
the last two values, the second forecast the last value.
When a moving average component is present, it is necessary to specify the actual
values for the error term. The me argument is used for this. As for the actual values,
the errors are taken from the end of me, and are only used when lagged errors fall in

298 Chapter 11 Packages

the pre-forecast period. For an ARMA(2,2) model (see e.g. Harvey, 1993, §2.6):

â0 = x0 + ϕ1aT−1 + ϕ2aT−2 + θ1ϵT−1 + θ2ϵT−2

â1 = x1 + ϕ1â0 + ϕ2aT−1 + θ2ϵT−1

â2 = x1 + ϕ1â1 + ϕ2â0
âh = xh + ϕ1âh−1 + ϕ2âh−2 h = 2, . . . ,H − 1,

See also
arma0, armavar, cumulate, modelforc

Example
We use an example from Harvey (1993, p.35):

yt = 0.6yt−1 + 0.2yt−2 + ϵt + 0.3ϵt−1 − 0.4ϵt−2.

Using yT = 4, yT−1 = 5, ϵT = 1 and ϵT−1 = 0.5 four forecasts are computed.
The two entries of 100 are ignored, because values are taken from the end:
#include <oxstd.oxh>
#include <arma.oxh>
main()
{

print(armaforc(zeros(4,1), <0.6,0.2,0.3,-0.4>, 2, 2,
<100;100;5.0;4.0>, <0.5;1>));

}

produces
3.5000
2.5000
2.2000
1.8200

armagen
armagen(const mx, const me, const vp, const cp,const cq);

mx in: T × n or T × 1 matrix of known component X
me in: T × n matrix of errors E
vp in: 1 × s matrix with autoregressive coefficients ϕ1, ϕ2, . . . , ϕp

followed by the moving average coefficients θ1, θ2, . . . , θq ,
s ≥ p+ q

cp in: int, no of autoregressive coefficients (could be 0)
cq in: int, no of moving average coefficients (could be 0)

Return value
Generates a an ARMA(p, q) series from an error term (me) and a mean term (mx).
The result has the same dimensions as mx. The first p rows of the return value will
be identical to those of mx; the recursion will be applied from the pth term onward
(missing lagged errors are set to zero).

Description
For a column (x0, . . . , xT−1)

′ of X , and a column (ϵ0, . . . , ϵT−1)
′ of E, this func-

tion computes:

at = xt t = 0, . . . , p− 1,
at = xt + ϕ1at−1 . . . ϕpat−p + ϵt + θ1ϵt−1 . . . θqϵt−q t = p, . . . , T − 1,

armavar 299

using ϵt = 0 for t < 0. For example when p = 1 and q = 2:

a0 = x0
a1 = x1 + ϕ1a0 + ϵ1 + θ1ϵ0
a2 = x2 + ϕ1a1 + ϵ2 + θ1ϵ1 + θ2ϵ0
at = xt + ϕ1at−1 + ϵt + θ1ϵt−1 + θ2ϵt−2 t = p, . . . , T − 1.

This function could be used to generate an ARMA(p, q) series from random num-
bers. In that case it is common to discard intitial observations to remove the effect
of starting up the recursion.

See also
arma0, armaforc, armavar, cumsum, cumulate

Example
#include <oxstd.oxh>
#include <arma.oxh>
main()
{

decl mx = ones(5,1), meps = rann(5,1) / 10;
print(armagen(mx, meps, <0.5, 0.5>, 1, 1)

~ armagen(mx, meps, <0.5>, 0, 1));
}

produces
1.0000 1.0225
1.6852 1.1852
1.9092 1.0666
1.8526 0.89803
1.8130 0.88670

armavar
armavar(const vp, const cp, const cq, const dvar,

const ct);
vp in: 1 × s matrix with autoregressive coefficients ϕ1, ϕ2, . . . , ϕp

followed by the moving average coefficients θ1, θ2, . . . , θq ,
s ≥ p+ q

cp in: int, no of autoregressive coefficients (could be 0)
cq in: int, no of moving average coefficients (could be 0)
dvar in: double, variance of disturbance, σ2

ϵ .
ct in: int, number of autocovariance terms required

Return value
Returns a 1× ct matrix with the autocovariances of the ARMA(p, q) process. Or 0
if the computations failed (e.g. when all autoregressive coefficients are zero).

Description
Computes the theoretical autocovariances c(i), i = 0, . . . , T −1 (see equation (8.3)
on page 185 for a definition) of the ARMA(p, q) process specified as

at = ϕ1at−1 + . . .+ ϕpat−p + ϵt + θ1ϵt−1 + . . .+ θqϵt−q, Eϵt = 0, Eϵ2t = σ2
ϵ .

using ϵt = 0 for t < 0. Stationary is assumed, but not verified. The computations
are based on the algorithm given in McLeod (1975).

300 Chapter 11 Packages

See also
arma0, pacf

Example
In the example below, we set σ2

ϵ such that we obtain the autocorrelation function:
#include <oxstd.oxh>
#include <arma.oxh>
main()
{

print(armavar(<0.5>, 1, 0, (1 - 0.5^2), 5)’
~ armavar(<-0.5>, 1, 0, (1 - (-0.5)^2), 5)’
~ armavar(<0.5>, 0, 1, 1 / (1 + 0.5^2), 5)’);

}

produces
1.0000 1.0000 1.0000

0.50000 -0.50000 0.40000
0.25000 0.25000 0.00000
0.12500 -0.12500 0.00000
0.062500 0.062500 0.00000

diffpow
diffpow(const ma, const d);

diffpow(const ma, const d, const dmisval);

ma in: T × n matrix A
d in: double, length of difference d, |d| ≤ 10000
dmisval in: (optional argument) double, value to set missing observa-

tions to (default is 0)
Return value

Returns a T ×n matrix with (1−L)dA. The result has the same dimensions as ma.
Description

Differences the specified matrix, missing values are replaced by zero (unless a miss-
ing value is specified as the third argument). For a column a = (a0, . . . , aT−1)

′ of
A, this function computes (1− L)da, defined as:

at =

t∑
j=0

(−d)j
j!

at−j , t = 0, . . . , T − 1,

where the (·)j symbol is defined as:

(z)0 = 1,
(z)j = z(z + 1) . . . (z + j − 1) for j > 0
(z)j = 1/ ((z − 1)(z − 2) . . . (z − j)) for j < 0

and using ak = 0 for k < 0.
See also

arma0, diff0
Example

In this example, fracdiff replicates the functionality of the library function
diffpow.

modelforc 301

#include <oxstd.oxh>
#include <arma.oxh>

fracdiff(const mY, const d)
{

decl i, mu = mY, fac = -d;

for (i = 1; i < rows(mY); ++i, fac *= (-d+i-1)/i)
mu += fac * lag0(mY,i);

return mu;
}
main()
{

decl mx = <1:5>’;
print(diffpow(mx,2) ~ diff0(diff0(mx,1),1) ~

diffpow(mx,-2) ~ diff0(diff0(mx,-1),-1));
print(diffpow(mx,0.2) ~ fracdiff(mx,0.2) ~

diffpow(mx,-0.2) ~ fracdiff(mx,-0.2));
}

produces
1.0000 0.00000 1.0000 0.00000

0.00000 1.0000 4.0000 0.00000
0.00000 0.00000 10.000 0.00000
0.00000 0.00000 20.000 -1.0000
0.00000 0.00000 35.000 0.00000

1.0000 1.0000 1.0000 1.0000
1.8000 1.8000 2.2000 2.2000
2.5200 2.5200 3.5200 3.5200
3.1920 3.1920 4.9280 4.9280
3.8304 3.8304 6.4064 6.4064

modelforc
modelforc(const mU, const mData, const miDep,

const miSel, const miLag, const mPi, const iTmin);

mU in: 0, or (T2 − T1 + 1)× n matrix U, optional error term
mData in: T (= T2 + 1)× d matrix D, database
miDep in: 1× n matrix with indices in D of dependent variables
miSel in: 1× k matrix with indices in D of explanatory variables
miLag in: 1× k matrix with lag lengths of explanatory variables
iTmin in: T1, observation to start forecasting from (this may be zero)

Return value
Returns the dynamic forecasts from a linear dynamic model as a (T − T1 = T2 −
T1 + 1)× n matrix.

Description

This function forecasts from a dynamic model, which may be an estimated (reduced
form) model or a DGP:

yt = Πwt + ut, t = T1, . . . , T2

302 Chapter 11 Packages

where w contains z, r lags of z and m lags of y:

w′
t =

(
y′
t−1, . . . ,y

′
t−m, z

′
t, . . . , z

′
t−r

)
.

Take yt as an n× 1 vector, zt as q × 1, and wt as k × 1.
Given data on zt for t = 0, . . . , T2, and on yt for t = 0, . . . , T1 − 1, modelforc
will produce forecasts for t = T1 . . . T2. No actual yt data is used for t ≥ T1,
only previously forecasted values. If lagged data is missing (zt, yt for t < 0), it is
assumed to be zero. If the error term is not given (mU argument 0 implies ut = 0),
the output corresponds to model forecasts. Otherwise it could e.g. be the fitted
values from a DGP. Note that in that case the first observation in the mU matrix is
uT1

.
See also

armaforc, cumulate, PcFimlDgp class.

pacf
pacf(const macf);

pacf(const macf, const alogdet);

pacf(const macf, const alogdet, const my);

pacf(const macf, const meps);

macf in arithmetic type, T × 1 matrix of autocovariances or autocor-
relations

alogdet in: (optional argument) address of variable
out: double, the logarithm of the the determinant of the filter

my in: (optional argument) T × n data matrix Y to apply filter to
meps in: (optional argument) T × n data matrix Y to apply inverse

filter to
Return value

• pacf(macf);

• pacf(macf, alogdet);

Returns a T × 1 matrix with the partial autocorrelation function of the first
column of macf.

• pacf(macf, alogdet, my);

Returns a T×(n+1) matrix with the residuals from the filter based on the spec-
ified ACF applied to the columns of my. The last column contains the standard
devations of the filter.

• pacf(macf, meps);

Returns a T × n matrix with the fitted values from applying the inverse filter
based on the specified ACF applied to the columns of my.

Returns 0 if the computations fail (the stochastic process has a root on the unit
circle).

Description
Given autocovariance (or autocorrelation) functions in the first column of macf, this
function computes the partial autocorrelations using Durbin’s method as described

pacf 303

in Golub and Van Loan (1989, §4.7.2). This corresponds to recursively solving
the Yule-Walker equations. For example, with autocorrelations, ρ0, ρ1, ρ2, . . ., the
first reported partial correlation is 1. The second is the solution p1 from (ρ0ρ1)

′ =
T (ρ0ρ1)(p0p1)

′, the third is p2 from (ρ0ρ1ρ2)
′ = T (ρ0ρ1ρ2)(p0p1p2)

′. This may
be verified by repeatedly using the function solvetoeplitz. See under toeplitz
for the T (·) notation.
For the theoretical PACF of an ARMA(p, q) process, use the results from armavar

as input. For the sample PACF, use the results from acf.
When a data matrix is specified, the filter (corresponding to the specified ACF) is
applied to the data, returning the residuals E. This corresponds to applying the
inverse Choleski factor to the data matrix:

T (ρ0ρ1 . . .) = LDL′ = PP ′, E = D−1/2L−1Y = P−1Y.

As in decldl, L is lower diagonal, with ones on the diagonal. D contains the
squared diagonal values, which here correspond to the residual variances. The last
column of the return value holds the diagonal ofD1/2. The log-determinant of T (·)
corresponds to twice the sum of the log of the last column of the return value.
When logdet is absent, and a data matrix (e.g. white noise) is specified, the in-
verse filter (corresponding to the specified ACF) is applied to the data, returning
the generated data Y. This corresponds to applying the Choleski factor to the data
matrix:

T (ρ0ρ1 . . .) = LDL′ = PP ′, Y = PE.

This allows for generating data according to the specified ACF when the input is
standard normal random data. In general, this is slower than applying P directly.
However, for large T , storage of P may become prohibitive.

See also
acf, arma0, armavar, solvetoeplitz

Example
#include <oxstd.oxh>
#include <arma.oxh>
main()
{

decl ct = 5;
decl acf1 = armavar(<0.5>, 1, 0, (1 - 0.5^2), ct)’;
decl acf2 = armavar(<-0.5>, 1, 0, (1 - (-0.5)^2), ct)’;
decl acf3 = armavar(<0.5>, 0, 1, 1 / (1 + 0.5^2), ct)’;
decl y = rann(ct,1), logdet, e;

print(pacf(acf1) ~ pacf(acf2) ~ pacf(acf3));

e = pacf(acf3, &logdet, y);
print(e ~ invert(choleski(toeplitz(acf3))) * y);
print("logdet = ", logdet, " ",

2 * double(sumc(log(e[][1]))));

e = pacf(acf1, &logdet, y);
print(arma0(y, <0.5>, 1, 0) ~ e[][0] .* e[][1]);
e = pacf(acf3, &logdet, y);
//differ, but will be the same beyond approx. 10 obs:

304 Chapter 11 Packages

print(arma0(y, <0.5>, 0, 1) ~ e[][0] .* e[][1]);
}

produces
1.0000 1.0000 1.0000

0.50000 -0.50000 0.40000
0.00000 0.00000 -0.19048
0.00000 0.00000 0.094118
0.00000 0.00000 -0.046921

0.22489 1.0000 0.22489
1.8004 0.91652 1.8004

-1.1003 0.89974 -1.1003
-0.47828 0.89574 -0.47828
-0.51476 0.89476 -0.51476

logdet = -0.82828 -0.82828
0.00000 0.22489
1.6276 1.6276

-1.0743 -1.0743
-0.81547 -0.81547
-0.21537 -0.21537

0.22489 0.22489
1.6276 1.6501

-1.0181 -0.99002
-0.40857 -0.42842
-0.46988 -0.46059

11.2 Maximization package 305

11.2 Maximization package
The maximization package implements maximization of functions of (several) parame-
ters, as well as numerical differentiation. The maximization package requires the header
file maximize.oxh, and linking in of maximize.oxo. This is achieved by adding
#import <maximize> at the top of your code.

11.2.1 Maximization control

Several aspects of maximization can be changed from the default settings, including
convergence tolerances, the number of iterations and the amount of output.

Three methods are available
1. by changing the global settings (GetMaxControl, GetMaxControlEps,

MaxControl, MaxControlEps);
2. through additional arguments to MaxBFGS etc.;
3. using a CMaxControl object as argument.

CMaxControl
CMaxControl(const iOptions=0);

Constructor. Only possible option is CMaxControl::PARALLEL SCORE.
GetControl();

returns { mxIter, iPrint, bCompact }.
GetEps();

returns { dEps1, dEps2 }.
GetIterationCount();

returns the iteration count.
GetResult();

returns the convergence code.
SetControl(const mxIter, const iPrint=-1, const bCompact=-1);

See MaxControl.
SetEps(const dEps1, const dEps2=-1);

See GetMaxControl.
SetIterationCount(const cIter);

Sets the iteration count.
SetOptions(const iOptions);

Only possible option is CMaxControl::PARALLEL SCORE.
SetResult(const iResult);

Sets the convergence code.

Description
The CMaxControl class manages the configurable maximization options in a more
convenient way. The added flexibility is that parallel numerical scores can be used,
and the number of iterations retrieved upon convergence.

306 Chapter 11 Packages

GetMaxControl, GetMaxControlEps
GetMaxControl();

GetMaxControlEps();

Return value
Return an array with three values and two values respectively.
GetMaxControl returns { mxIter, iPrint, bCompact }.
GetMaxControlEps returns { dEps1, dEps2 }.

See also
MaxControl, MaxControlEps

MaxControl, MaxControlEps
MaxControl(const mxIter, const iPrint);

MaxControl(const mxIter, const iPrint, const bCompact);

MaxControlEps(const dEps1, const dEps2);

mxIter in: int, maximum number of iterations; default is
1000, use −1 to leave the current value un-
changed

iPrint in: int, print results every iPrint’th iteration; default
is 0, use −1 to leave the current value unchanged

bCompact in: int, if TRUE uses compact format for iteration re-
sults (optional argument)

dEps1 in: double, ϵ1, default is 10−4, use ≤ 0 to leave the
current value unchanged

dEps2 in: double, ϵ2, default is 5× 10−3, use ≤ 0 to leave
the current value unchanged

Return value
No return value.

Description
The MaxControl and MaxControlEps functions provide control over some itera-
tion parameters. Use a value of –1 for mxIter, iPrint, dEps1 or dEps2 to leave
the current value unchanged.

See also
GetMaxControl, GetMaxControlEps, MaxBFGS (for an example), MaxSimplex

MaxConvergenceMsg
MaxConvergenceMsg(const iCode);

iCode in: int, code returned by MaxBFGS, MaxNewton, etc.
Return value

Returns the text corresponding to the convergence code listed under the return val-
ues of MaxBFGS.

See also
MaxBFGS (for an example), MaxNewton, MaxSimplex, MaxSQP, MaxSQPF

FindZero 307

11.2.2 Maximization functions

FindZero
#import <maxscalar>

FindZero(const Func, const dX, dStep, const dTol, const mxIter);

Func in: function to find root of: Func(x) returns the function value
dX in: double, center of initial bracket
dStep in: double, determines bracket

[dX + 2^i * dStep,dX + 2^i * dStep] with sign
change (default 0.1)

dTol in: convergence tolerance (default 1e-13)
mxIter in: int, maximum no of iterations (default 1000)

The supplied Func argument should have the following format:
Func(const x);

x in: scalar argument
returns function value at x

Return value
Returns the root.

Description
Brent (1973) algorithm to find root of a function of one variable without using
derivatives.

Example
See samples/maximize/test maxscalar.ox.

MaxBFGS
#import <maximize>

MaxBFGS(const func, const avP, const adFunc, const amInvHess,

const fNumDer);

MaxBFGS(const func, const avP, const adFunc, const amInvHess,

const fNumDer, const objMaxCtrl);

func in: a function computing the function value, optionally with
derivatives

avP in: address of p× 1 matrix with starting values
out: p× 1 matrix with final coefficients

adFunc in: address
out: double, final function value

amInvHess in: address of p × p matrix, initial (inverse negative) quasi-
Hessian K; a possible starting value is the identity matrix
or: 0, in which case the identity matrix is used

out: if not 0 on input: final K (not reliable as estimate of actual
Hessian)

fNumDer in: 0: func provides analytical first derivatives
1: use numerical first derivatives

objMaxCtrl in: CMaxControl object (optional argument)
out updated to reflect status and iteration count.

308 Chapter 11 Packages

The supplied func argument should have the following format:
func(const vP, const adFunc, const avScore, const amHessian);

vP in: p× 1 matrix with coefficients
adFunc in: address

out: double, function value at vP
avScore in: 0, or an address

out: if !0 on input: p× 1 matrix with first derivatives
at vP

amHessian in: always 0 for MaxBFGS, as it does not need the
Hessian

returns 1: successful, 0: function evaluation failed
Return value

Returns the status of the iterative process:
MAX CONV Strong convergence

Both convergence tests (11.2) and (11.3) were passed, using tolerance ϵ = ϵ1.
MAX WEAK CONV Weak convergence (no improvement in line search)

The step length si has become too small. The convergence test (11.2) was
passed, using tolerance ϵ = ϵ2.

MAX MAXIT No convergence (maximum no of iterations reached)
MAX LINE FAIL No convergence (no improvement in line search)

The step length si has become too small. The convergence test (11.2) was not
passed, using tolerance ϵ = ϵ2.

MAX FUNC FAIL No convergence (function evaluation failed)
The chosen default values for the tolerances are:

ϵ1 = 10−4, ϵ2 = 5× 10−3.

Description
MaxBFGS maximizes a function, using the quasi-Newton method developed by
Broyden, Fletcher, Goldfarb, Shanno (BFGS). The function either uses supplied
analytical first derivatives, or numerical first derivatives (in which case only the
function values need to be available: this uses the function Num1Derivative).
Using numerical derivatives saves programming (and thinking) time, but analytical
dervatives tend to be computable with higher accuracy and over a wider parameter
range. The iteration process is unaffected by this choice, other than caused by the
slight numerical differences between the two methods (and the lower robustness of
numerical derivatives).
A Newton scheme is used to maximize the unconstrained function f(θ):

θ(k + 1) = θ(k) + s(k)Q(k)−1q(k), (11.1)

with
θ(k) parameter values at iteration k;
s(k) step length, normally 1;
Q(k) symmetric positive definite matrix (at iteration k);
q(k) first derivative of the function (the score vector);
δ(k) = θ(k)− θ(k − 1), the change in the parameters;
γ(k) = q(k)− q(k − 1), the change in the score.

MaxBFGS 309

The BFGS method updates K = Q−1 directly, avoiding the need for second deriva-
tives. A linear line search is used when necessary.
Owing to numerical problems it is possible (especially close to the maximum) that
the calculated δi does not yield a higher likelihood. Then an si ∈ [0, 1] yielding a
higher function value is determined by a line search. Theoretically, since the direc-
tion is upward, such an si should exist; however, numerically it might be impossible
to find one. When using BFGS with numerical derivatives, it often pays to scale the
data so that the initial gradients are of the same order of magnitude.

The convergence decision is based on two tests. The first uses likelihood elasticities
(∂ℓ/∂ log θ, switching notation from f(θ) to ℓ(θ)):

|qi,jθi,j | ≤ ϵ for all j when θi,j ̸= 0,
|qi,j | ≤ ϵ for all j with θi,j = 0.

(11.2)

The second is based on the one-step-ahead relative change in the parameter values:

|δi+1,j | ≤ 10ϵ |θi,j | for all j with θi,j ̸= 0,
|δi+1,j | ≤ 10ϵ for all j when θi,j = 0.

(11.3)

The final inverse negative quasi-Hessian K can not reliably used to estimate stan-
dard errors. When, for example, iteration starts in the maximum with an identity
matrix as initial quasi-Hessian, the final-Hessian will also be the identity matrix.
Instead, it is possible to take the inverse of minus the numerical second derivatives.
Note that the code resides in src/maximize.ox. To use this function, ei-
ther include the code, or link the corresponding maximize.oxo file using
#import <maximize>.

See also
MaxControl, MaxConvergenceMsg, MaxNewton, Num1Derivative,
Num2Derivative

Example
The following example minimizes the so-called Rosenbrock function (see Fletcher,
1987):

f(α, β) = 100 ∗
(
β − α2

)2
+ (1− α)

2
.

No data are involved. It is easily seen that the minimum is at (1, 1) with func-
tion value 0. The contours are rather banana-shaped. The program maximizes the
function twice, starting from (0,0), once with analytical derivatives, once without:
. .samples/maximize/maxbfgs.ox
#include <oxstd.oxh>
#import <maximize>

fRosenbrock(const vP, const adFunc, const avScore, const amHessian)
{

adFunc[0] = -100 * (vP[1] - vP[0] ^ 2) ^ 2
- (1 - vP[0]) ^ 2; // function value

if (avScore) // if !0: compute score
{ // this bit is not needed for numerical derivatives

(avScore[0])[0] = 400 * (vP[1] - vP[0]^2)

310 Chapter 11 Packages

* vP[0] + 2 * (1 - vP[0]);
(avScore[0])[1] = -200 * (vP[1] - vP[0]^2);

}
return 1; // 1 indicates success
}

main()
{

decl vp, dfunc, ir;
MaxControl(1000, 50);

vp = zeros(2, 1); // starting values
ir = MaxBFGS(fRosenbrock, &vp, &dfunc, 0, FALSE);

print("\n", MaxConvergenceMsg(ir),
" using analytical derivatives",
"\nFunction value = ", dfunc, "; parameters:",vp);

vp = zeros(2, 1); // starting values
ir = MaxBFGS(fRosenbrock, &vp, &dfunc, 0, TRUE);

print("\n", MaxConvergenceMsg(ir),
" using numerical derivatives",
"\nFunction value = ", dfunc, "; parameters:",vp);

}
. .

This produces:
Starting values
parameters

0.00000 0.00000
gradients

2.0000 0.00000
Initial function = -1

Position after 20 BFGS iterations
Status: Strong convergence
parameters

1.0000 0.99999
gradients
-6.7948e-005 3.8365e-005
function value = -2.29573829351e-011

Strong convergence using analytical derivatives
Function value = -2.29574e-011; parameters:

1.0000
0.99999

Starting values
parameters

0.00000 0.00000
gradients

2.0000 0.00000
Initial function = -1

Position after 20 BFGS iterations

MaxBFGS 311

Status: Strong convergence
parameters

1.0000 0.99999
gradients
-6.7948e-005 3.8365e-005
function value = -2.30014575614e-011

Strong convergence using numerical derivatives
Function value = -2.30015e-011; parameters:

1.0000
0.99999

312 Chapter 11 Packages

MaxNewton
#import <maximize>

MaxNewton(const func, const avP, const adFunc, const amInvHess,

const fNumDer);

MaxNewton(const func, const avP, const adFunc, const amInvHess,

const fNumDer, const objMaxCtrl);

func in: a function computing the function value, option-
ally with derivatives

avP in: address of p× 1 matrix with starting values
out: p× 1 matrix with final coefficients

adFunc in: address
out: double, final function value

amHessian in: address, or 0
out: if not 0 on input: final Hessian H

fNumDer in: 0: func provides analytical second derivatives
1: use numerical second derivatives

objMaxCtrl in: CMaxControl object (optional argument)
out updated to reflect status and iteration count.

The supplied func argument should have the following format:
func(const vP, const adFunc, const avScore, const amHessian);

vP in: p× 1 matrix with coefficients
adFunc in: address

out: double, function value at vP
avScore in: 0, or an address

out: if !0 on input: p× 1 matrix with first derivatives
at vP

amHessian in: 0, or an address
out: if !0 on input: p × p matrix with second deriva-

tives (Hessian matrix) at vP
returns 1: successful, 0: function evaluation failed

Return value
Returns the status of the iterative process, see MaxBFGS.

Description
MaxNewton maximizes a function, using the Newton method. The function ex-
pects analytical first derivatives (scores), and either uses supplied analytical second
derivatives (Hessian), or computes the Hessian numerically. The numerical second
derivatives are computed using forward differences on the scores.
Using numerical derivatives saves programming (and thinking) time, but analytical
dervatives tend to be computable with higher accuracy and over a wider parameter
range. The iteration process is unaffected by this choice, other than caused by the
small numerical differences between the two methods (and the lower robustness of
numerical derivatives).
MaxNewton uses a scheme like (11.1) to maximize f(θ):

θ(k + 1) = θ(k)− s(k)H(k)−1q(k),

MaxNewton 313

where H is the user supplied Hessian matrix. This requires that H is negative
definite at each step. If this is not the case, a steepest descent step with line search
is taken. Otherwise the line search is as discussed in MaxFBGS. The convergence
decision is also the same as for MaxBFGS.
Since the Hessian matrix is user supplied, this function can be used to implement
various methods, for example:

H description
∂2f (θ)/∂θ∂θ′ Newton’s method
E[H] method of scoring
I steepest descent
OPG outer product of gradients: BHHH method, see

Berndt, Hall, Hall, and Hausman, 1974

Note that the code resides in src/maximize.ox. To use this function, ei-
ther include the code, or link the corresponding maximize.oxo file using
#import <maximize>.

See also
MaxBFGS, MaxControl, MaxConvergenceMsg, Num1Derivative, Num2Derivative

Example
The following program extends the MaxBFGS example by adding second derivatives
to the Rosenbrock function. Note that we always should check whether the score
and Hessian arguments are of type array. For example, during the line search neither
are required, and both will be zero. When numerical second derivatives are used the
amHessian arguments to fRosenbrock will always be zero.
. samples/maximize/maxnewt.ox
#include <oxstd.oxh>
#import <maximize>

fRosenbrock(const vP, const adFunc, const avScore, const amHessian)
{

decl ab2 = vP[1] - vP[0] ^ 2, a1 = 1 - vP[0];

adFunc[0] = -100 * ab2 ^ 2 - a1 ^ 2;
if (avScore) // if !0: compute score
{

(avScore[0])[0] = 400 * ab2 * vP[0] + 2 * a1;
(avScore[0])[1] = -200 * ab2;

}
if (amHessian) // if !0: compute Hessian
{ // this bit is not needed for numerical derivatives

(amHessian[0])[0][0] =
400 * vP[1] - 1200 * vP[0]^2 - 2;

(amHessian[0])[1][1] = -200;
(amHessian[0])[1][0] =

(amHessian[0])[0][1] = 400 * vP[0];
}

return 1; // 1 indicates success
}

main()
{

314 Chapter 11 Packages

decl vp, dfunc, ir, mhess;

// MaxControl(100, 1, 1);

vp = zeros(2, 1); // starting values
ir = MaxNewton(fRosenbrock, &vp, &dfunc,&mhess, TRUE);

print("\n", MaxConvergenceMsg(ir),
" using numerical 2nd derivatives",
"\nFunction value = ", dfunc, "; parameters:", vp,
"final Hessian:", mhess);

vp = zeros(2, 1); // starting values
ir = MaxNewton(fRosenbrock, &vp, &dfunc,&mhess,FALSE);

print("\n", MaxConvergenceMsg(ir),
" using analytical 2nd derivatives",
"\nFunction value = ", dfunc, "; parameters:", vp,
"final Hessian:", mhess);

}
. .

produces
Strong convergence using numerical 2nd derivatives
Function value = -2.45742e-009; parameters:

1.0000
1.0000

final Hessian:
-0.49900 -0.99799
-0.99799 -2.0010

Strong convergence using analytical 2nd derivatives
Function value = -1.22009e-012; parameters:

1.0000
1.0000

final Hessian:
-0.50000 -0.99999
-0.99999 -2.0050

MaxScalarBrent 315

MaxScalarBrent
#import <maxscalar>

MaxScalarBrent(const Func, const dP0, const dP1, dF0, dF1,

const dA, const dB, const dTol, const mxIter)

MaxScalarPowell(const Func, const dP0, const dP1, dF0, dF1,

const dA, const dB, const dTol, const mxIter)

Func in: function to maximize: Func(x) returns the function value
dP0 in: double, first starting value
dP1 in: double, second starting value
dF0 in: double, function value at dP0 (default .NaN to force evalua-

tion)
dF1 in: double, function value at dP1 (default .NaN to force evalua-

tion)
dA,dB in: doubles, defining interval to maximize over (default -

100,100). Must have dP0,dP1 in (dA,dB), but this is not
checked!

dTol in: convergence tolerance (default 1e-7)
mxIter in: int, maximum no of iterations (default 1000)

The supplied Func argument should have the following format:
Func(const x);

x in: scalar argument
returns function value at x

Return value
Returns an array with four elements
[0] argument a maximum
[1] function value at maximum
[2] no of function calls
[3] no of iterations

Description
Brent (1973) algorithm to find maximum of a function of one variable without using
derivatives.
Powell (1963) algorithm to find maximum of a function of one variable without
using derivatives.
See also

MaxBFGS

Example
See samples/maximize/test maxscalar.ox.

316 Chapter 11 Packages

MaxSimplex
#import <maximize>

MaxSimplex(const func, const avP, const adFunc, vDelta);

MaxSimplex(const func, const avP, const adFunc, vDelta,

const objMaxCtrl);

func in: a function computing the function value
avP in: address of p× 1 matrix with starting values

out: p× 1 matrix with coefficients at convergence
adFunc in: address

out: double, function value at convergence
vDelta in: 0, or a p× 1 matrix with the initial simplex (if 0 is specified,

the score is used for the initial simplex)
objMaxCtrl in: CMaxControl object (optional argument)

out updated to reflect status and iteration count.

The supplied func argument should have the same format as in MaxBFGS.
Return value

Returns the status of the iterative process, as documented under MaxBFGS.
Description

Maximizes a function using the simplex method, see for example Applied Statis-
tics algorithm AS 47 (O’Neil, 1971). The simplex method can be rather slow.
For reasonably well behaved functions, a preferred derivative free method is
MaxBFGS using numerical derivatives.
Note that the code resides in src/maximize.ox. To use this function, ei-
ther include the code, or link the corresponding maximize.oxo file using
#import <maximize>.

See also
MaxBFGS

Example
. samples/maximize/maxboth.ox
#include <oxstd.oxh>
#include <oxfloat.h>
#import <maximize>

fRosenbrock(const vP, const adFunc, const avScore, const amHessian)
{

adFunc[0] =
-100 * (vP[1][0] - vP[0][0] ^ 2) ^ 2 - (1 - vP[0][0]) ^ 2;

return 1;
}
fPowell(const vP, const adFunc, const avScore, const amHessian)
{

adFunc[0] =
-((vP[0][0] + 10*vP[1][0]) ^ 2 + 5 * (vP[2][0] - vP[3][0]) ^ 2
+(vP[1][0] - 2*vP[2][0]) ^ 4 + 10 * (vP[0][0] + vP[3][0]) ^ 4);

return 1;
}

MaxSimplex 317

fQuad(const vP, const adFunc, const avScore, const amHessian)
{

adFunc[0] = -double(sumc(vP .^ 4));

return 1;
}

main()
{

decl vp, vf, mh;

format(66); // shorter lines than normal
MaxControl(-1,1000);

vp = <-1.2;1>; mh = unit(2);
MaxBFGS(fRosenbrock, &vp, &vf, &mh, TRUE);
vp = <-1.2;1>; mh = unit(2);
MaxSimplex(fRosenbrock, &vp, &vf, 0 /*<1;1>*/);

vp = <3;-1;0;1>; mh = unit(4);
MaxBFGS(fPowell, &vp, &vf, &mh, TRUE);
vp = <3;-1;0;1>; mh = unit(4);
MaxSimplex(fPowell, &vp, &vf, 0 /*<1;1;1;1>*/);

vp = ones(10,1); mh = unit(10);
MaxBFGS(fQuad, &vp, &vf, &mh, TRUE);
vp = ones(10,1); mh = unit(10);
MaxSimplex(fQuad, &vp, &vf, 0 /*vp*/);

}
. .

produces after some editing of the output:
Starting values
parameters

-1.2000 1.0000
gradients

215.60 88.000
Initial function = -24.2

Position after 33 BFGS iterations
Status: Strong convergence
parameters

1.0000 1.0000
gradients
-6.6755e-008 4.8263e-008
function value = -4.0124066543e-016

Starting values
parameters

-1.2000 1.0000
Initial function = -24.2

Position after 132 Simplex iterations
Status: Strong convergence
parameters

1.0000 1.0000

318 Chapter 11 Packages

gradients
3.1028e-005 -1.5521e-005

function value = -6.02226722279e-013

Starting values
parameters

3.0000 -1.0000 0.00000 1.0000
gradients

-2546.0 144.00 2.0000 -2570.0
Initial function = -2615

Position after 50 BFGS iterations
Status: Strong convergence
parameters
-4.2609e-005 4.2609e-006 -0.00017248 -0.00017248

gradients
6.0617e-010 1.9090e-009 -2.5012e-010 9.8933e-010

function value = -3.62744789919e-014

Starting values
parameters

3.0000 -1.0000 0.00000 1.0000
Initial function = -2615

Position after 239 Simplex iterations
Status: Strong convergence
parameters

-0.00081637 8.1527e-005 0.00029861 0.00029848
gradients

2.2137e-006 2.2082e-005 -1.3407e-006 1.3451e-006
function value = -2.09880254028e-012

Starting values
parameters

1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000

gradients
-4.0000 -4.0000 -4.0000 -4.0000 -4.0000
-4.0000 -4.0000 -4.0000 -4.0000 -4.0000

Initial function = -10

Position after 1 BFGS iterations
Status: Strong convergence
function value = 0 steplen = 0.25
Initial function = -10

Position after 454 Simplex iterations
Status: Strong convergence
parameters

0.00012390 -0.00040964 0.00099913 7.2798e-005 -0.00027496
0.00085512 -0.00076729 -0.00081975 0.00052821 -0.00060839

gradients
-7.6214e-012 2.7501e-010 -3.9896e-009 -1.5505e-012 8.3175e-011
-2.5012e-009 1.8070e-009 2.2036e-009 -5.8956e-010 9.0080e-010

function value = -2.5783761224e-012

MaxSQP 319

MaxSQP, MaxSQPF
#import <maxsqp>

MaxSQP(const func, const avP, const adFunc, const amHessian,

const fNumDer, const cfunc_gt0, const cfunc_eq0, vLo, vHi, ...);

MaxSQP(const func, const avP, const adFunc, const amHessian,

const fNumDer, const cfunc_gt0, const cfunc_eq0, vLo, vHi,

const cfunc_gt0_jac, const cfunc_eq0_jac, const objMaxCtrl);

MaxSQPF(const func, const avP, const adFunc, const amHessian,

const fNumDer, const cfunc_gt0, const cfunc_eq0, vLo, vHi, ...);

MaxSQPF(const func, const avP, const adFunc, const amHessian,

const fNumDer, const cfunc_gt0, const cfunc_eq0, vLo, vHi,

const cfunc_gt0_jac, const cfunc_eq0_jac, const objMaxCtrl);

func in: a function computing the function value, option-
ally with derivatives

avP in: address of p× 1 matrix with starting values
out: p× 1 matrix with final coefficients

adFunc in: address
out: double, final function value

amHessian in: address, or 0
out: if not 0 on input: final Hessian (BFGS-style) ap-

proximation B
fNumDer in: 0: func provides analytical first derivatives

1: use numerical first derivatives
vLo in: p× 1 matrix with lower bounds, or <>
vHi in: p× 1 matrix with upper bounds, or <>
objMaxCtrl in: CMaxControl object (optional argument)

out updated to reflect status and iteration count.

The supplied func argument should have the same format as in MaxBFGS.
The cfunc gt0 argument can be zero, or a function evaluating the nonlinear con-
straints (which will be constrained to be positive) with the following format:
cfunc_gt0(const avF, const vP);

avF in: address
out: m× 1 matrix with inequality constraints at vP

vP in: p× 1 matrix with coefficients
returns 1: successful, 0: constraint evaluation failed

The cfunc eq0 argument can be zero, or a function evaluating the nonlinear con-
straints (which will be constrained to zero) with the following format:
cfunc_eq0(const avF, const vP);

avF in: address
out: me × 1 matrix with equality constraints at vP

vP in: p× 1 matrix with coefficients
returns 1: successful, 0: constraint evaluation failed

The cfunc gt0 jac and cfunc eq0 jac are optional functions that return the an-
alytical Jacobian matrix of the constraints. They have the same format, returning in

320 Chapter 11 Packages

avF an m× 1 and an me × p matrix respectively.
Return value

Returns the status of the iterative process, see MaxBFGS.
Description

MaxSQP implements a sequential quadratic programming technique to maximize
a non-linear function subject to non-linear constraints, similar to Algorithm 18.7
in Nocedal and Wright (1999).
MaxSQPF enforces all iterates to be feasible, using the Algorithm by Lawrence
and Tits (2001). The current version does not support equality constraints. If a
starting point is infeasible, MaxSQPF will try to minimize the squared constraint
violations to find a feasible point.
Note that the code resides in src/maxsqp.ox. To use these functions add the
line #import <maxsqp> at the top of the file.

See also
MaxBFGS, MaxControl, MaxConvergenceMsg, Num1Derivative,
Num2Derivative

Example
See ox\samples\maximize.

Num1Derivative 321

Num1Derivative, Num2Derivative
#import <maximize>

Num1Derivative(const func, vP, const avScore);

Num1Derivative_parallel(const func, vP, const avScore);

Num2Derivative(const func, vP, const amHessian);

Num2Derivative_parallel(const func, vP, const amHessian);

func in: a function computing the function value, option-
ally with derivatives

vP in: p× 1 matrix with parameter values
mHessian in: p× p matrix, initial Hessian
avScore in: an address

out: p× 1 matrix with 1st derivatives at vP
amHessian in: an address

out: p× p matrix with 2nd derivatives at vP

The supplied func argument should have the format as documented under
MaxBFGS.
Return value

Returns 1 if successful, 0 otherwise.
Description

These functions take numerical first and second differences of a function based
on a central finite difference approximation. The numerical derivatives are cal-
culated using:

f (θ + ϵı)− f (θ − ϵı)

µ
≃ ∂f (θ)

∂ (ı′θ)

where ı is a unit vector (for example, (1 0 . . . 0)
′ for the first element of θ), ϵ is a

suitably chosen step length. Thus, ϵ represents a compromise between round-off
error (cancellation of leading digits when subtracting nearly equal numbers) and
truncation error (ignoring terms of higher order than ϵ in the approximation).
Although the Ox code chooses ϵ carefully, there may be situations where the
numerical derivative performs poorly.
If in Num1Derivative one-side fails, the procedure will use a one-sided differ-
ence.
The numerical values of second derivatives can be computed in a corresponding
way using:

f(θ + ϵ1ı+ ϵ2ȷ) + f(θ − ϵ1ı− ϵ2ȷ)− f(θ − ϵ1ı+ ϵ2ȷ)− f(θ + ϵ1ı− ϵ2ȷ)

4ϵ1ϵ2

where ı or ȷ is zero except for unity in the ith or jth position.
Num1Derivative parallel and Num2Derivative parallel use a parallel
for loop over the parameters.
Note that the code resides in src/maximize.ox. Add #import <maximize>

to use this function.
See also

MaxBFGS

322 Chapter 11 Packages

Example
The following example is based on the Rosenbrock function (see MaxBFGS):

Num1Derivative 323

. samples/maximize/numder.ox
#include <oxstd.oxh>
#import <maximize>

fRosenbrock(const vP, const adFunc, const avScore, const amHessian)
{

adFunc[0] = -100 * (vP[1][0] - vP[0][0] ^ 2) ^ 2
- (1 - vP[0][0]) ^ 2; // function value

if (avScore) // if !0: compute score
{ // this bit is not needed for numerical derivatives

(avScore[0])[0][0]= 400 * (vP[1][0] - vP[0][0]^2)
* vP[0][0] + 2 * (1 - vP[0][0]);

(avScore[0])[1][0]=-200 * (vP[1][0] - vP[0][0]^2);
}

return 1;
}

main()
{

decl vp, dfunc, vscore, mhess;

vscore = vp = zeros(2, 1); // starting values

fRosenbrock(vp, &dfunc, &vscore, 0);
print("analytical first derivative at <0;0>", vscore);

if (Num1Derivative(fRosenbrock, vp, &vscore))
print("numerical 1st derivative at <0;0>", vscore);

if (Num2Derivative(fRosenbrock, vp, &mhess))
print("numerical 2nd derivative at <0;0>", mhess);

}
. .

produces
analytical first derivative at <0;0>

2.0000
0.00000

numerical 1st derivative at <0;0>
2.0000

0.00000
numerical 2nd derivative at <0;0>

-2.0000 0.00000
0.00000 -200.00

324 Chapter 11 Packages

NumJacobian
#import <maximize>

NumJacobian(const func, vU, const amJacobian);
func in: function mapping from restricted to unrestricted parameters
vU in: of u× 1 matrix with parameters
amJacobian in: address

out: r × u Jacobian matrix corresponding to mapping

The supplied func argument should have the following format:
func(const avR, const vU);
avR in: address

out: r × 1 matrix with restricted coefficients
vU in: u× 1 matrix with unrestricted coefficients
returns 1: successful, 0: function evaluation failed

Return value
Returns 1 if successful, 0 otherwise.

Description
Computes the Jacobian matrix of the restrictions imposed of the form θ = f(ϕ):
J = ∂f(ϕ)/∂θ′; f(·) is an r-vector, ϕ is an u-vector.
Use #import <maximize> (the code is in src/maximize.ox).

See also
Num1Derivative

Example
. samples/maximize/jacobian.ox
#include <oxstd.oxh>
#import <maximize>

fMap(const avR, const vU)
{

avR[0] = vU[: rows(vU) - 2][] .^ 2; // drop last row, square
return 1;
}
main()
{

decl vp, mjacob;

if (NumJacobian(fMap, ones(4, 1), &mjacob))
print("numerical Jacobian at <1;1;1;1>", mjacob);

if (NumJacobian(fMap, zeros(4, 1), &mjacob))
print("numerical Jacobian at <0;0;0;0>", mjacob);

}
. .

numerical Jacobian at <1;1;1;1>
2.0000 0.00000 0.00000 0.00000

0.00000 2.0000 0.00000 0.00000
0.00000 0.00000 2.0000 0.00000

numerical Jacobian at <0;0;0;0>
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000

SolveNLE 325

SolveNLE

#import <solvenle>

SolveNLE(const func, const avX);

SolveNLE(const func, const avX, iMode, funcJac, const objMaxCtrl);

SolveNLE(const func, const avX, iMode, funcJac, dEps1, dEps2,

mxIter, iPrint, mxItInner);

func in: Ox function evaluating the nonlinear equations (see below)
avX in: address of n× 1 matrix with starting values

out: n× 1 matrix with final coefficients
iMode in: int, mode of operation:

−1 (default): mode 1 if n < 80, else mode 3
0: Newton’s method using analytical Jacobian
1: Newton’s method using numerical Jacobian
2: using Broyden’s approximation to Jacobian
3: large scale problem (tensor-gmres method, avoiding n×n
Jacobian matrix)

funcJac in: a function computing the function value, optionally with
derivatives

dEps1 in: double, ϵ1, default is 10−4, use ≤ 0 to leave the current value
unchanged (can also be set with MaxControlEps)

dEps2 in: double, ϵ2, default is 5 × 10−3, use ≤ 0 to leave the current
value unchanged (can also be set with MaxControlEps)

mxIter in: int, maximum number of iterations; default is 1000, use −1
to leave the current value unchanged (can also be set with
MaxControl)

iPrint in: int, print results every iPrint’th iteration; default is 0, use −1
to leave the current value unchanged (can also be set with
MaxControl)

mxItInner in: int, number of inner iterations for large scale problems, use
−1 for the default max(50, 10 ∗ log10(n))

objMaxCtrl in: CMaxControl object (optional argument)
out updated to reflect status and iteration count.

• The supplied func argument should have the following format:
func(const avF, const vX)

avF in: address
out: n× 1 matrix with with nonlinear system f(x) evaluated at x

vX in: n× 1 matrix with coefficients x
returns 1: successful, 0: function evaluation failed

Return value
Returns 1 if successful, 0 otherwise.

• When the analytical Jacobian is used, the funcJac argument should have the
following format:
funcJac(const amJac, const vX)

326 Chapter 11 Packages

amJac in: address
out: n× n Jacobian matrix evaluated at x

vX in: n× 1 matrix with coefficients x
returns 1: successful, 0: function evaluation failed

Return value
Returns 1 if successful, 0 otherwise.

Return value
Returns the status of the iterative process:
MAX CONV Strong convergence

norm(f(x)) < 0.001ϵ1.
MAX WEAK CONV Weak convergence (no improvement in line search)

The step length has become too small, but norm(f(x)) < ϵ2.
MAX MAXIT No convergence (maximum no of iterations reached)
MAX LINE FAIL No convergence (no improvement in line search)

The step length has become too small and weak convergence was not
achieved.

MAX FUNC FAIL No convergence (function evaluation failed)
MAX NOCONV No convergence

Probably not yet attempted to solve the system.
The chosen default values for the tolerances are:

ϵ1 = 10−4, ϵ2 = 5× 10−3.

Description
Solves a system f(x) of n nonlinear equations in n unknowns. The principle
method implemented is the tensor–Newton method, using either a numerical
or analytical Jacobian matrix. The tensor–Newton method is similar (but not
identical) to that discussed in Schnabel and Frank (1985). There is an option
to use the Broyden approximation to the Jacobian instead, but that often works
less well in practice. Finally, a large scale option avoids the n × n Jacobian
matrix and uses the gmres method to approximately solve the linear system,
and nonlinear gmres to solve the tensor system (so is different from Feng and
Pulliam, 1997).
For a general overview see, e.g., Dennis Jr. and Schnabel (1983) and Nocedal
and Wright (1999).
Note that the code resides in src/solvenle.ox. Add #import <solvenle>

to use this function.
See also

CMaxControl, MaxControl, MaxControlEps
Example

. samples/maximize/solvenle1.ox (part of)
#include <oxstd.oxh>
#import <maximize>
#import <solvenle>

test813(const avF, const vX)
{

avF[0] = vX[0] + vX[1] - 3 | sqr(vX[0]) + sqr(vX[1]) - 9;

SolveNLE 327

return 1;
}
test813_jac(const amJac, const vX)
{

amJac[0] = (1 ~ 1) | (2 * vX[0] ~ 2 * vX[1]);
return 1;

}

main()
{

decl x;
MaxControl(-1, 1, 1);

x = <1;5>;
println("==== Using numerical Jacobian:");
SolveNLE(test813, &x);
println("x=", x);

x = <1;5>;
println("\n==== Using analytical Jacobian:");
SolveNLE(test813, &x, 0, test813_jac);
println("x=", x);

}
. .

produces
==== Using numerical Jacobian:
it0 f’f/2= 149.0000 ||f||= 17.000
it1 f’f/2= 10.26612 ||f||= 4.5313 slope= -298.00
it2 f’f/2= 0.1598528 ||f||= 0.56543 slope= -20.550
it3 f’f/2= 0.0001087224 ||f||= 0.014746 slope= -0.32032
it4 f’f/2=3.744902e-022 ||f||=2.2677e-011 slope= -0.00021762
SolveNLE(1): Strong convergence
x=
1.1541e-011

3.0000

==== Using analytical Jacobian:
it0 f’f/2= 149.0000 ||f||= 17.000
it1 f’f/2= 10.26611 ||f||= 4.5312 slope= -298.00
it2 f’f/2= 0.1598527 ||f||= 0.56543 slope= -20.550
it3 f’f/2= 0.0001087224 ||f||= 0.014746 slope= -0.32032
it4 f’f/2=3.243347e-023 ||f||=8.0540e-012 slope= -0.00021762
SolveNLE(0): Strong convergence
x=
-1.3427e-012

3.0000

328 Chapter 11 Packages

SolveQP
#import <solveqp>

SolveQP(const mG, const vG, const mA, const vB, const mC,

const vD, const vLo, const vHi);

SolveQPE(const mG, const vG, const mC, const vD);

SolveQPS(const sFile, const iVerbose)

SolveQPS(const sFile, const iVerbose, const fnSolveQP)

mG in: n× n matrix G with quadratic weights, or
n× 1 vector with diagonal of G

vG in: n× 1 vector g with linear weights
mA in: m × n matrix A with linear inequality constraints Ax ≥ b

(may be empty)
vB in: m×1 vector b with right-hand side for linear inequality con-

straints (empty if A is empty)
mC in: me × n matrix C with linear equality constraints (may be

empty)
vD in: me × 1 vector d with right-hand side for linear equality con-

straints (empty if C is empty)
vLo in: n× 1 vector with lower bounds (may be empty)
vHi in: n× 1 vector with upper bounds (may be empty)
sFile in: string with .qps file name
iVerbose in: int, 0 for no output, 1 for one line summary output, 2 to print

all matrices and results
fnSolveQP in: (optional argument) QP solver with call syntax as SolveQP.

If absent SolveQP is used.
Return value

SolveQP returns an array with three elements:
[0] integer return value:

0 success
1 initial point not feasible (should only be possible when SolveQPIF is

called directly)
2 maximum number of iterations reached

[1] n× 1 vector with solution x
[2]m∗ × 1 vector with Lagrange multipliers λ, m∗ = me +m+ 2n

in order: equality constraints, inequality constraints, lower bounds, upper
bounds.

SolveQPE returns an array with three elements:
[0] n× 1 vector with solution x
[1]me × 1 vector with Lagrange multipliers λ
[2] p × 1 vector with index of redundant constraint (p = 0 if all constraints

were used)
SolveQPS returns an array with four elements: the first three as SolveQP, the
fourth is the value of the objective function f(x).

SolveQP 329

Description
SolveQP solves the quadratic program

min f(x) = x′Gx/2 + x′g, subject to:
Ax ≥ b,
Cx = d,

xlo ≤ x ≤ xhi.

using an active set method based on a QR decomposition of G−1A′. This is
updated using decqrupdate to achieve reasonable speed. If G is not positive
definite, a small number is added to its diagonal. Sparseness is not taken into
account, so SolveQP is not appropriate for large problems (say more than 1000
variables or constraints). SolveQP implements a pre-processing step, where
bounds which are part of A are moved to the explicit bound variables, and the
remaining restrictions are checked for the tightest bounds. See, for example,
Nocedal and Wright (1999) or Fletcher (1987) for an overview.
Note that the code resides in src/solveqp.ox. Add #import <solveqp> to
use this function.

See also
MaxFSQP

Example
. samples/maximize/solveqp1.ox
#include <oxstd.oxh>
#import <solveqp>

main()
{

decl mg, vg, ma, vb, x, iret;
mg = <4,2,2;2,4,0;2,0,2>;
vg = <-8;-6;-4>;
ma = <-1,-1,-2>;
vb = <-3>;

[iret,x] = SolveQP(mg, vg, ma, vb, <>, <>, <>, <>);
println("HS35 result from SolveQP: ", iret, " (0=OK)",

" x’= ", x’, "f=", (x’mg*x) / 2 + vg’x + 9);

[iret,x] = SolveQP(mg, vg, ma, vb, <>, <>,
<-.Inf;0.5;-.Inf>, <.Inf;0.5;.Inf>);

println("HS35MOD result from SolveQP: ", iret, " (0=OK)",
" x’= ", x’, "f=", (x’mg*x) / 2 + vg’x + 9);

[iret,x] = SolveQP(mg, vg, ma, vb, <0,1,0>, <0.5>, <>, <>);
println("HS35MOD result from SolveQP: ", iret, " (0=OK)",

" x’= ", x’, "f=", (x’mg*x) / 2 + vg’x + 9);

mg = <0.02;2>;
vg = <0;0>;
ma = <10,-1;1,0;-1,0;0,1;0,-1>;
vb = <10;2;-50;-50;-50>;
[iret,x] = SolveQP(mg, vg, ma, vb, <>, <>, <>, <>);
println("HS21 result from SolveQP: ", iret, " (0=OK)",

330 Chapter 11 Packages

" x’= ", x’, "f=", (x’(mg.*x)) / 2 + vg’x - 10);
}
. .

produces
HS35 result from SolveQP: 0 (0=OK) x’=

1.3333 0.77778 0.44444
f=

0.11111
HS35MOD result from SolveQP: 0 (0=OK) x’=

1.5000 0.50000 0.50000
f=

0.25000
HS35MOD result from SolveQP: 0 (0=OK) x’=

1.5000 0.50000 0.50000
f=

0.25000
HS21 result from SolveQP: 0 (0=OK) x’=

2.0000 0.00000
f=

-9.9600

11.3 Probability package 331

11.3 Probability package
The probability package contains various probability distributions (the stan-
dard library only defines the standard sampling distributions). It also con-
tains random number generators for many distributions. This package requires
#include <oxprob.h>.

dens. . .
“nobreak
densbeta(const ma, const a, const b);

densbinomial(const ma, const n, const p);

denscauchy(const ma);

densexp(const ma, const lambda);

densextremevalue(const ma, const alpha, const beta);

densgamma(const ma, const dr, const da);

densgeometric(const ma, const p);

densgh(const ma, const nu, const delta, const gamma, const beta);

densgig(const ma, const nu, const delta, const gamma);

denshypergeometric(const ma, const n, const k, const m);

densinvgaussian(const ma, const mu, const lambda);

denskernel(const ma, const itype);

denslogarithmic(const ma, const alpha);

denslogistic(const ma, const alpha, const beta);

denslogn(const ma);

densmises(const ma, const mu, const kappa);

densnegbin(const ma, const k, const p);

denspareto(const ma, const k, const a);

denspoisson(const ma, const mu);

densweibull(const ma, const a, const b);

ma in: arithmetic type
a,b in: arithmetic type, arguments for Beta distribution
alpha,beta in: arithmetic type, location and scale parameter
lambda in: arithmetic type, parameter of exponential distribution
mu in: arithmetic type, von Mises: mean direction (use M PI for

symmetric between 0 and π); Poisson: mean
kappa in: arithmetic type, dispersion

Return value
The return type is derived as follows:

returns ma degrees of freedom arguments
m× n matrix m× n matrix scalar
m× n matrix scalar m× n matrix
m× n matrix m× n matrix m× n matrix
double scalar scalar

332 Chapter 11 Packages

Returns the requested density at ma (the returned densities are positive):

function
density (for discrete distributions: Pr{X = x})

densbeta

Beta (a, b), 1
B(a,b)

xa−1(1− x)b−1 0 < x < 1; a > 0, b > 0

densbinomial

Binomial(n,p)
(
n
x

)
pxqn−x x = 0, 1, . . . , n; 0 ≤ p ≤ 1

denscauchy

Cauchy,
(
π
(
1 + x2

))−1

densexp

Exponential, λe−λx x > 0;λ > 0
densextremevalue

Extreme Value, e−(x−α)/β

β
F (x) where β > 0

(Type I or Gumbel) F (x) = exp
[
−e−(x−α)/β

]
densgamma

Gamma ar

Γ(r)
xr−1e−ax x > 0; r > 0, a > 0

densgeometric
Geometric pqx x = 0, 1, . . . ; µ > 0

densgh
Generalized hyperbolic, see (11.5)

densgig
Generalized inverse Gaussian, see (11.4)

denshypergeometric

Hypergeometric
(
K
x

)(
M −K
n− x

)
/

(
M
n

)
x = 0, 1, . . . , n

Pr[x white balls | sample n without replacement from K white balls and M in total]
densinvgaussian

Inverse Gaussian,
(

λ
2πx3

)1/2
exp

[
−λ(x−µ)2

2µ2x

]
x > 0; λ > 0, µ > 0

denskernel
kernel, see below

denslogarithmic

Logarithmic −αx

x log(1−α)
x = 1, 2 . . . ; 0 < α < 1

denslogistic

Logistic, F (x)(1−F (x))
β

F (x) =
[
1 + e−(x−α)/β

]−1

, β > 0,
denslogn

Lognormal, 1

x(2π)1/2
exp

[
−(log x)2/2

]
x > 0

densmises
von Mises, see (11.7) below

densnegbin

Negative Binomial
(
k + x− 1

x

)
pkqx x = 0, 1, . . . ; 0 < p ≤ 1, k > 0

denspareto

Pareto(k, a) akax−(a+1) x ≥ k > 0; a > 0
denspoisson

Poisson e−µµx

x!
x = 0, 1, . . . ; µ > 0

densweibull

Weibull abxb−1 exp
(
−axb

)
x > 0; a > 0, b > 0

densbeta 333

denskernel arguments:
itype kernel name form
’e’ Epanechnikov 0.75(1− x2) |x| < 1
’b’ Biweight (Quartic) (15/16)(1− x2)2 |x| < 1
’t’ Triangular 1− |x| |x| < 1
’g’ Gaussian (Normal) (2π)−1/2 exp

[
−x2/2

]
’r’ Rectangular (Uniform) 0.5 |x| < 1

Description
The information regarding the generalized inverse Gaussian and generalized hy-
perbolic distributions is based on Barndorff-Nielsen and Shephard (2001). The
generalized inverse Gaussian distribution is a rather general model for positive
random variables.
If X ∼ GIG(ν, δ, γ) then it has a generalized inverse Gaussian density:

(γ/δ)ν

2Kν(δγ)
xν−1 exp

{
−1

2
(δ2x−1 + γ2x)

}
, γ, δ ≥ 0, ν ∈ R, x > 0,

(11.4)
where Kν is a modified Bessel function of the third kind.
The generalized hyperbolic distribution with µ = 0, GH(ν, δ, γ, β) has support
on the real line. The density is :

(γ/δ)
ν

√
2παν− 1

2Kν (δγ)

{
δ2 + x2

} 1
2 (ν−

1
2)Kν− 1

2

(
α
[
δ2 + x2

]1/2)
eβx, (11.5)

where α =
√
β2 + γ2. For µ ̸= 0 replace x by x− µ.

Some special cases of the GIG distribution are:

Gamma: Γ(ν, γ2/2) = GIG(ν > 0, 0, γ),
Reciprocal Gamma: RΓ(ν, δ2/2) = GIG(−ν, δ, 0),
Inverse Gaussian: IG(δ, γ) = GIG(− 1

2 , δ, γ),
Reciprocal inverse Gaussian: RIG(δ, γ) = GIG(12 , δ, γ),
Positive hyperbolic: PH(δ, γ) = GIG(1, δ, γ).
Reciprocal positive Hyperbolic: PH(δ, γ) = GIG(−1, δ, γ).

Some special cases of the GH distribution are:

Normal N(0, σ2) = limγ→∞GH(ν, γ, 0, σ2γ),
Normal inverse Gaussian NIG(α, β, δ) = GH

(
− 1

2 , α, β, δ
)
,

Reciprocal NIG NRIG(α, β, δ) = GH
(
1
2 , α, β, δ

)
,

Hyperbolic H(α, β, δ) = GH(1, α, β, δ),
Skewed Student’s t T (ν, δ, β) = GH(−ν, β, β, δ),
Student’s t = limα→∞GH(−ν, β, β, δ),
Laplace La(α, β) = GH(1, α, β, 0)
Normal Gamma NΓ(ν, δ, β) = GH(ν, β, β, δ),
Reciprocal hyperbolic RH(α, β, δ) = GH(−1, α, β, δ).

See also
prob..., quan..., tail...

334 Chapter 11 Packages

prob. . .
probbeta(const ma, const a, const b);

probbinomial(const ma, const n, const p);

probbvn(const da, const db, const drho);

probcauchy(const ma);

probexp(const ma, const lambda);

probextremevalue(const ma, const alpha, const beta);

probgamma(const ma, const dr, const da);

probgeometric(const ma, const p);

probhypergeometric(const ma, const n, const k, const m);

probinvgaussian(const ma, const mu, const lambda);

problogarithmic(const ma, const alpha);

problogistic(const ma, const alpha, const beta);

problogn(const ma);

probmises(const ma, const mu, const kappa);

probmvn(const mx, const msigma);

probnegbin(const ma, const k, const p);

probpareto(const ma, const k, const a);

probpoisson(const ma, const mu);

probweibull(const ma, const a, const b);
ma in: arithmetic type
a,b in: arithmetic type, arguments for Beta distribution
dr in: arithmetic type
da in: arithmetic type
mu in: arithmetic type, von Mises: mean direction (use M PI for

symmetric between 0 and π); Poisson: mean
alpha,beta in: arithmetic type, location and scale parameter
lambda in: arithmetic type, parameter of exponential distribution
kappa in: arithmetic type, dispersion
nc in: arithmetic type, non-centrality parameter
da,db in: arithmetic type, upper limits of integration
drho in: arithmetic type, correlation coefficient
mx in: m× n matrix for n-variate normal
msigma in: n× n variance matrix Σ

Return value
The return type for probbvn is a double if all arguments are scalar, or an m×n
matrix if one or more arguments are an m× n matrix.
The return type for probbeta, probgamma, probmises, probpoisson is de-
rived as follows:

returns ma degrees of freedom arguments
m× n matrix m× n matrix scalar
m× n matrix scalar m× n matrix
m× n matrix m× n matrix m× n matrix
double scalar scalar

The return type for probmvn is a double if m = 1, or an m × 1 vector if

probbeta 335

m > 1, wherem is the number of rows of the first argument. Note that probmvn
currently only computes up to a trivariate normal distribution.

Returns the requested cumulative distribution functions at ma (P [X ≤ x]; the
returned probabilities are between zero and one):

probbvn bivariate normal distribution,
probbinomial Bin(n, p) distribution,
probbeta Beta(a, b) distribution,
probcauchy Cauchy distribution,
probexp exp(λ) distribution with mean 1/λ,
probextremevalue Extreme Value (type I or Gumbel) distribution,
probgamma Γ distribution,
probgeometric Geometric distribution,
probhypergeometric Hypergeometric distribution,
probinvgaussian Inverse Gaussian distribution,
problogarithmic Logarithmic distribution,
problogistic Logistic distribution,
problogn Lognormal distribution,
probmises VM(µ, κ) distribution,
probmvn normal distribution Nn(0,Σ), n ≤ 3,
probnegbin Negative Binomial distribution,
probpareto Pareto distribution,
probpoisson Poisson µ distribution,
probweibull Weibull distribution.

The functional forms are listed under the density functions.
The probabilities are accurate to about 10 digits, except for probbvn and
probmvn which are accurate to 10−15.

Description
The bivariate normal distribution with mean zero and correlation ρ is defined as:(

2π
√
1− ρ2

)−1
∫ a

−∞

∫ b

−∞
exp

(
−1

2

x2 − 2ρxy + y2

1− ρ2

)
dxdy.

The Beta distribution is defined as Ix(a, b) under betafunc.
The Gamma distribution, Γ(z; r, a), is defined as:

Γ(z; r, a) =

∫ z

0

ar

Γ(r)
xr−1e−axdx, z > 0, r > 0, a > 0. (11.6)

so that Γ(z; r, 1) corresponds to the incomplete gamma function. Note that
χ(df) can be computed as Γ(·; 0.5df, 0.5).
The von Mises distribution VM(µ, κ) is defined as:

F (z) =

∫ z

0

[2πI0(κ)]
−1

eκ cos(x−µ)
dx, 0 ≤ z < 2π, κ ≥ 0, (11.7)

where I0(κ) is the modified Bessel function. Note that the density is defined
from 0 to 2π, which means that the mean direction is π and not zero. Usually,

336 Chapter 11 Packages

VM(0, κ) is written for the symmetric von Mises distribution. In the current
notation, that corresponds to VM(π, κ). For applications of the von Mises dis-
tribution, see e.g. Fisher (1993).
The multivariate normal distribution with mean zero and n× n variance matrix
Σ is defined as:

[(2π)n|Σ|]−1/2
∫ a

−∞

∫ b

−∞

∫ c

−∞
exp

(
−1

2
x′Σ−1x

)
dx,

where x′ = (x1, x2, . . . , xn).
Sources: probmises uses AS 86 (Mardia and Zemroch, 1975). The bivariate
and trivariate normal distributions are derived from Genz (2000).

See also
bessel, betafunc, gammafunc, dens..., quan..., tail...

Example
#include <oxstd.oxh>
#include <oxprob.h>
main()
{

decl m = <0,4.61,5.99>;

print("%r", {"chi: "}, probchi(m, 2));
print("%r", {"gamma:"}, probgamma(m, 1, 0.5));

println("Bivariate normal probabilities (rho=0 and 1):");
println("BVN=", probbvn(<0,0>, <1.645,1.645>, <0,1>));

println("Multivariate normal probabilities (unit variance):");
println("TVN=", probmvn(<0,0,0;1.645,1.645,1.645>, unit(3))’);
println("BVN=", probmvn(<0,0;1.645,1.645>, unit(2))’);
println("N=", probmvn(<0;1.645>, unit(1))’);

}

produces
chi: 0.00000 0.90024 0.94996
gamma: 0.00000 0.90024 0.94996
Bivariate normal probabilities (rho=0 and 1):
BVN=

0.47501 0.50000
Multivariate normal probabilities (unit variance):
TVN=

0.12500 0.85742
BVN=

0.25000 0.90253
N=

0.50000 0.95002

quanbeta 337

quan. . .

quanbeta(const ma, const a, const b);

quanbinomial(const ma, const n, const p);

quancauchy(const ma);

quanexp(const ma, const lambda);

quanextremevalue(const ma, const alpha, const beta);

quangamma(const ma, const dr, const da);

quangeometric(const ma, const p);

quanhypergeometric(const ma, const n, const k, const m);

quaninvgaussian(const ma, const mu, const lambda);

quanlogarithmic(const ma, const alpha);

quanlogistic(const ma, const alpha, const beta);

quanlogn(const mx);

quanmises(const mp, const mu, const kappa);

quannegbin(const ma, const k, const p);

quanpareto(const ma, const k, const a);

quanpoisson(const ma, const mu);

quanweibull(const ma, const a, const b);

ma in: arithmetic type, probabilities: all values must be between 0
and 1

a,b in: arithmetic type, arguments for Beta distribution
dr in: arithmetic type
da in: arithmetic type
alpha,beta in: arithmetic type, location and scale parameter
lambda in: arithmetic type, parameter of exponential distribution
mu in: arithmetic type, mean direction (use M PI for symmetric be-

tween 0 and π)
kappa in: arithmetic type, dispersion

Return value
The return type is derived as follows:

returns ma degrees of freedom arguments
m× n matrix m× n matrix scalar
m× n matrix scalar m× n matrix
m× n matrix m× n matrix m× n matrix
double scalar scalar

Returns the requested quantiles (inverse probability function; percentage points)
at ma:
quanbeta quantiles from Beta (a, b) distribution
quanbinomial quantiles from Bin(n, p) distribution,
quancauchy quantiles from the Cauchy distribution,
quanexp quantiles from the exp(λ) distribution with mean 1/λ,
quanextremevalue quantiles from the Extreme Value (type I or Gumbel),

338 Chapter 11 Packages

quangamma quantiles from Γ(r, a) distribution
quangeometric quantiles from the Geometric distribution,
quanhypergeometric quantiles from the Hypergeometric distribution,
quaninvgaussian quantiles from the Inverse Gaussian distribution,
quanlogarithmic quantiles from the Logarithmic distribution,
quanlogistic quantiles from the Logistic distribution,
quanlogn quantiles from the Lognormal distribution,
quanmises quantiles from VM(µ, κ) distribution
quannegbin quantiles from the Negative Binomial distribution,
quanpareto quantiles from the Pareto distribution,
quanpoisson quantiles from the Poisson µ distribution,
quanweibull quantiles from the Weibull distribution.

The functional forms are listed under the density functions.
The quantiles are accurate to about 10 digits.

See also
dens..., prob..., tail... lib/Quantile.ox (to compute quantiles of
other distributions)

ranbeta 339

ran. . .

ranbeta(const r, const c, const a, const b);

ranbinomial(const r, const c, const n, const p);

ranbrownianmotion(const r, const times);

ranchi(const r, const c, const df);

rancauchy(const r, const c);

randirichlet(const r, const valpha);

ranexp(const r, const c, const lambda);

ranextremevalue(const r, const c, const alpha, const beta);

ranf(const r, const c, const df1, const df2);

rangamma(const r, const c, const dr, const da);

rangeometric(const r, const c, const p);

rangh(const r, const c, const nu, const delta, const gamma,

const beta);

rangig(const r, const c, const nu, const delta, const gamma);

ranhypergeometric(const r, const c, const n, const k, const m);

ranindex(const c);

ranindex(const c, const n);

raninvgaussian(const r, const c, const mu, const lambda);

ranlogarithmic(const r, const c, const alpha);

ranlogistic(const r, const c);

ranlogn(const r, const c);

ranmises(const ma, const kappa);

ranmultinomial(const n, const vp);

rannegbin(const r, const c, const k, const p);

ranpareto(const r, const c, const k, const a);

ranpoisson(const r, const c, const mu);

ranpoissonprocess(const r, const times, const mu);

ranshuffle(const c, const x);

ranstable(const r, const c, const alpha, const beta);

ransubsample(const c, const n);

rant(const r, const c, const df);

ranuorder(const c);

ranweibull(const r, const c, const a, const b);

ranwishart(const n, const p);

r in: int, number of rows
c in: int, number of columns
a,b in: double or r × c matrix, arguments for Beta distribution
n in: int, number of trials
p in: double, probability of success (rangeometric also allows r×c

matrix)
vp in: vector with c probabilities of success (must sum to one)
lambda in: double or r × c matrix

340 Chapter 11 Packages

df in: double or r × c matrix, degrees of freedom
df1 in: double or r × c matrix, degrees of freedom in the numerator
df2 in: double or r×cmatrix, degrees of freedom in the denominator
dr in: double or r × c matrix
da in: double or r × c matrix
mu in: double or r × c matrix, mean
kappa in: double or r × c matrix, dispersion (mean direction is π)
alpha in: double or r × c matrix
beta in: double or r × c matrix
nu in: double, parameter for GH and GIG distributions
valpha in: vector with c+ 1 shape parameters for Dirichlet distribution
times in: vector with c time points (must be non-decreasing)
x in: column or row vector to sample from

Return value
The following return a r × c matrix of random numbers which is filled by row.
Note that, if both r and c are 1, the return value is a scalar of type double! The
functional forms are listed under the density functions.

Description
All these functions use uniform random numbers generated as described under
ranu.
The rangamma function uses algorithms 3.19 and 3.20 from Ripley (1987),
rangamma is used for ranchi: rangamma(n1/2, 1/2), and ranf: ranchi(n1)
n2 / (n1 ranchi(n2)), ranbinomial is based on a simple execution of the
Bernoulli trials, rannegbin sums k independent geometric random numbers,
ranmultinomial generates n order statistics and counts the bin contents,
ranpoisson uses algorithms 3.3 and 3.15 from Ripley (1987). Drawings from
the Beta and Dirichlet distributions are generated as a ratio of Gamma’s.
The ranmises function generates random numbers between 0 and 2π from the
von Mises distribution with mean direction π. For a different mean use:
fmod(ranmises(r, c, kappa) + mu, M_2PI)

(M 2PI requires oxfloat.h). The algorithm is given in Best and Fisher (1979).
The inverse Gaussian distribution is generated according to Michael, Schucany,
and Haas (1976). The logistic distribution uses algorithm LBM from Kemp
(1981). The stable distribution with location zero and scale 1 has characteristic
function:

ϕ(t) = exp

[
|t|α

{
1 + iβ

t

|t|
w(|t|, α)

}]
where

w(|t|, α) =
{

tan(12πα), α ̸= 1,
2
π log |t|, α = 1.

The skewness parameter is β (−1 ≤ β ≤ 1), and the characteristic component
α (0 < α ≤ 2). Stable random number generation is implemented according to
Chambers, Mallows, and Sturk (1976) (but without the corrections for α close
to but not equal to one).

ranbeta 341

function Generates random numbers from
ranbeta Beta(a, b) distribution,
ranbinomial Binomial(n, p) distribution,
ranbrownianmotion r realizations of the Brownian motion,
rancauchy equals rant(r, c, 1),
ranchi χ2(df) distribution,
randirichlet Dirichlet(α1, . . . , αc+1) distribution (each row is

a realization of the c-variate random variable),
ranexp exp(λ) distribution with mean 1/λ,
ranextremevalue Extreme Value (type I or Gumbel) distribution,
ranf F (df1, df2) distribution,
rangamma Gamma(r, a) distribution, see (11.6), p. 335,
rangeometric Geometric distribution,
rangh GH(ν, δ, γ, β) distribution (see densgh)
rangig GIG(ν, δ, γ) distribution (see densgig)
ranhypergeometric Hypergeometric distribution,
raninvgaussian Inverse Gaussian(µ, λ) distribution,
ranlogarithmic logarithmic distribution,
ranlogistic logistic distribution,
ranlogn log normal distribution,
ranmises VM(π, κ) distribution, see (11.7), p. 335,
rannegbin Negative binomial(k, p) distribution,
ranpareto Pareto(k, a) distribution,
ranpoisson Poisson(µ) distribution,
ranpoissonprocess r realizations of the Poisson process,
ranstable Stable distribution, S(α, β), 0 < α ≤ 2, −1 ≤ β ≤ 1

with location 0, and scale 1, S(2, 0) ∼ N(0, 2),
rant Student t(df), df need not be integer.
ranweibull Weibull distribution.
ranwishart Wishart(n, Ip) distribution, returns a p× p matrix.

Let V =
∑n

i=1 xix
′
i where xi ∼ Np(0, Ip),

then V ∼ Wishart(n, Ip).

The following return a 1× c matrix of random numbers:

function Generates random numbers from
ranindex(c) draws c numbers from 0, . . . , c− 1 without replacement,
ranindex(c,n) draws c numbers from 0, . . . , n− 1 without replacement

(this is the same as ranshuffle(c, range(0,n-1))),
ranmultinomial Multinomial(n, p1, p2, . . . , pc) distribution,

vp must hold the m probabilities which sum to one,
ranshuffle draws c elements from x without replacement,
ransubsample draws c numbers from the integers 0, . . . , n− 1 without

replacement (the return value is sorted, so
ransubsample(n,n) returns 0, ..., n− 1),

ranuorder generates c uniform order statistics.

342 Chapter 11 Packages

Description
The uniform random order statistics are generated using the method of expo-
nential spacing (see, e.g., Ripley, 1987, p.97). This may be combined with a
quantile function to generate random order statistics of other distributions, e.g.
for 100 standard normal order statistics use quann(ranuorder(100)).
The Wishart(n, Ip) random numbers are generated as in Applied Statistics al-
gorithm AS 53 (Smith and Hocking, 1972). To generate from a Wishart(n,Σp)
use PWP′ where PP′ = Σp and W is generated as Wishart(n, Ip).
Several generators use rejection methods (notably rann, rangamma, and hence
rannt and ranchi). Such generators may suffer from a lattice structure in the
uniform rng (i.e. correlation between successive values). This may be notice-
able in the higher moments (skewnewss and kurtosis) of the generated data. If
this is a problem, use quantiles of the uniform rng, such as quanchi(ranu(),
...)). (Also see Ripley, 1987, p.55–59.)
ransubsample draws without replacement. To draw c numbers with replace-
ment from 0, . . . , n−1, simply use int(ranu(1,c) * n). Note that the return
value from ransubsample is ordered (so ransubsample(n,n) just returns
0, . . . , n − 1). Use ranshuffle(c, range(0,n-1))) if a random ordering
is required.
A simple generic method to draw random numbers from the GIG distribution
(11.4) has been derived by Dagnapur (1988, pp. 133-5), and adjusted by Lehner
(1989). This technique is used in rangig. If σ2 ∼ GIG(ν, δ, γ) and is indepen-
dent of ε ∼ N(0, 1), then βσ2 + σε has the generalized hyperbolic distribution
(11.5). This is used in rangh.
For ranbrownianmotion, the increment has an N [0,∆τ] distribution. Defin-
ing τ as the T -vector of time steps:

y0 = ε0 ∗ τ1/20 ,

yt = yt−1 + εt ∗ (τt − τt−1)
1/2

, t = 1, . . . , T − 1,

where εt is IN[0, 1]. In the case of ranpoissonprocess, the increment has a
Poisson(µ∆τ) distribution:

y0 = z0 z0 ∼ Poisson(µτ0),
yt = yt−1 + zt, zt ∼ Poisson (µ [τt − τt−1]) , t = 1, . . . , T − 1.

The function argument times represents the vector τ . If the r argument is set
to one, one column of length vec(times) is generated. If r is greater than one,
r independent columns are generated, and the return value is a matrix with r
columns.

See also
rann, ranseed, ranu

Example
#include <oxstd.oxh>
#include <oxprob.h>
main()
{

print(double(sumc(ranchi(1000,1,5))) / 1000, " ");

ranbeta 343

print(double(sumc(ranexp(1000,1,5))) / 1000, " ");
print(double(sumc(rann(1000,1))) / 1000);

ranseed(-1);
print(rann(1,5));
ranseed(-1);
print(rann(1,3) ~ rann(1,2));

ranseed(-1);
println("%4.0f", ransubsample(5, 9));
println("%4.0f", ranshuffle(5, range(0,9)));

}

produces
4.97999 0.206975 0.0173497

0.22489 1.7400 -0.20426 -0.91760 -0.67417

0.22489 1.7400 -0.20426 -0.91760 -0.67417

2 3 4 5 7

4 7 6 5 8

344 Chapter 11 Packages

11.4 QuadPack

QuadPack (documented in Piessens, de Donker-Kapenga, Überhuber, and Kahaner,
1983) is a Fortran library for univariate numerical integration (‘quadrature’) using
adaptive rules. The main driver functions are exported to Ox from quadpack.dll,
using the header file quadpack.h. At the end of this section is a sample program
using several of these functions. Full documentation is in Piessens, de Donker-
Kapenga, Überhuber, and Kahaner, 1983.

QNG, QAG, QAGS, QAGP, QAGI
QNG (const func, const a, const b, const aresult,

const aabserr);

QAG (const func, const a, const b, const key,

const aresult, const aabserr);

QAGS(const func, const a, const b, const aresult,

const aabserr);

QAGP(const func, const a, const b, const vpoints,

const aresult, const aabserr);

QAGI(const func, const bound, const inf, const aresult,

const aabserr);

func in: function to integrate; func must be a function of one argu-
ment (a double), returning a double

a in: double, lower limit of integration
b in: double, upper limit of integration
key in: int, key for choice of local integration rule, which determines

the number of points in the Gauss-Kronrod pair: ≤ 1 (7–15
points), 2 (10–21 points), 3 (15–31 points), 4 (20–41 points),
5 (25–51 points), ≥ 6 (30–61 points).

vpoints in: row vector with singularities of integrand
bound in: double, lower bound (inf == 1) or upper bound (inf == –1)
inf in: int, 1 :

∫∞
b

, −1 :
∫ b

−∞, 2 :
∫∞
−∞

aresult in: address of variable
out: double, approximation to the integral

aabserr in: address of variable
out: double, estimate of the modulus of the absolute error

Return value
Result of the QuadPack routine:

0 normal and reliable termination of routine;
1 maximum number of steps has been executed;
2 roundoff error prevents reaching the desired tolerance;
3 extremely bad integrand behaviour prevents reaching tolerance;
4 algorithm does not converge;
5 integral is probably convergent or slowly divergent;
6 invalid input;
10 not enough memory;

An error message greater than 0 is reported unless switched off with QPWARN.

11.4 QuadPack 345

Description
QNG: simple non-adaptive automatic integrator for a smooth integrand.
QAG: simple globally adaptive Gauss-Kronrod-based integrator, with choice of
formulae.
QAGS: globally adaptive integrator with extrapolation, which can handle inte-
grand singularities of several types.
QAGP: as QAGS, but allows the user to specify singularities, discontinuities and
other difficulties of the integrand.
QAGI: as QAGS, but handles integration over infinite integrals.

QAWO, QAWF, QAWS, QAWC

#include <quadpack.h>

QAWO(const func, const a, const b, const omega, const fcos,

const maxp1, const aresult, const aabserr);

QAWF(const func, const a, const omega, const fcos, const limlst,

const maxp1, const aresult, const aabserr);

QAWS(const func, const a, const b, const alpha, const beta,

const type, const aresult, const aabserr);

QAWC(const func, const a, const b, const c, const aresult,

const aabserr);

func in: function to integrate; func must be a function of one argu-
ment (a double), returning a double

a in: double, lower limit of integration
b in: double, upper limit of integration
omega in: double, factor in cosine or sine function
fcos in: int, 1: function to integrate is cos(ωx)f(x), else it is

sin(ωx)f(x)
maxp1 in: in: int, upper bound on the number of Chebyshev moments

which can be stored.
limlst in: int, upper bound on the number of cycles (must be 3).
alpha,beta in: double, powers in w(x), both > −1.
itype in: int, 1: v(x) = 1; 2: v(x) = log(x−a); 3: v(x) = log(b−x);

4: v(x) = log(x− a) ∗ log(b− x).
c in: double, term for Cauchy principal value (!= a and != b).
aresult in: address of variable

out: double, approximation to the integral
aabserr in: address of variable

out: double, estimate of the modulus of the absolute error
Return value

Result of the QuadPack routine:

346 Chapter 11 Packages

0 normal and reliable termination of routine;
1 maximum number of steps has been executed;
2 roundoff error prevents reaching the desired tolerance;
3 extremely bad integrand behaviour prevents reaching tolerance;
4 algorithm does not converge;
5 integral is probably convergent or slowly divergent;
6 invalid input;
10 not enough memory;

An error message greater than 0 is reported unless switched off with QPWARN.
Description

QAWO: integrates cos(ωx)f(x) or sin(ωx)f(x) over a finite interval (a, b).
QAWF: Fourier cosine or Fourier sine transform of f(x), from a to infinity. (QAWF
returns error 6 if epsabs is zero, use QPEPS to change the value of epsabs.)
QAWS: integrates w(x) ∗ f(x) over a finite interval (a, b), where w(x) = [(x −
a)α][(b− x)β]v(x), and v(x) depends on the itype argument.
QAWC: Cauchy principal value of f(x)/(x − c) over a finite interval (a, b) and
for user-determined c.

QPEPS, QPWARN
QPEPS(const epsabs, const epsrel);

QPWARN(const ion);

epsabs in: double, absolute accuracy requested (the default value is
ϵa = 0)

epsrel in: double, relative accuracy requested (the default value is ϵr =
10−10)

ion in: 1: print warning and error messages (the default), or 0: don’t
print

No return value.
Description

QPEPS Sets the accuracy which the integration routines should try to achieve.
Let Î be the approximation from the QuadPack routines to the integral:

I =

∫ b

a

f(x)dx,

then the result will hopefully satisfy:∣∣∣I − Î
∣∣∣ ≤ abserr ≤ max {ϵa, ϵr |I|} .

QPWARN controls whether warning/error messages are printed or not.
Example

#include <oxstd.oxh>
#include <quadpack.h>

output(const sFunc, const result, const abserr)
{

print(sFunc, result, " abserr=", abserr, "\n");
}

11.4 QuadPack 347

mydensn(const x)
{

return densn(x);
}
main()
{

decl result, abserr, pn = probn(1) - probn(0);

QNG(densn, 0.0, 1.0, &result, &abserr);
output("QNG: ", result, abserr);

QAG(densn, 0.0, 1.0, 5, &result, &abserr);
output("QAG: ", result, abserr);

QAG(densn, 0.0, 1.0, 15, &result, &abserr);
output("QAG: ", result, abserr);

QAGS(densn, 0.0, 1.0, &result, &abserr);
output("QAGS:", result, abserr);

QAGP(densn, 0.0, 1.0, <0.1,0.9>, &result, &abserr);
output("QAGP:", result, abserr);

QAGI(mydensn, 0, 1, &result, &abserr);
output("QAGI:", result, abserr);

print("using probn(): ", probn(1) - probn(0),
" and ", probn(0), "\n");

}

produces
QNG: 0.341345 abserr=3.78969e-015
Quadpack warning 1
QAG: 0.330835 abserr=0.0101865
QAG: 0.341345 abserr=3.78969e-015
QAGS:0.341345 abserr=3.78969e-015
QAGP:0.341345 abserr=3.78969e-015
QAGI:0.5 abserr=1.24255e-011
using probn(): 0.341345 and 0.5

Chapter 12

Class reference

This chapter documents the preprogrammed classes which are provided with the Ox
system. All classes in this chapter are located as follows in the Ox installation:

ox/include header file (.oxh)
ox/include compiled code (.oxo file)
ox/src source code (.ox file)

To use these classes, it is necessary to include the header file, and import the .ox

or .oxo file. This is most easily achieved using the #import <...> statement (see
13.9.4). For example:

#import <database>

which automatically inserts database.oxh at that point, and links database.oxo
when the program is executed (or database.ox if the .oxo file does not exist).

348

12.1 Database and Sample class 349

12.1 Database and Sample class

12.1.1 Introduction

The Sample class stores a time interval, and the frequency, e.g. 1980 (1) – 1990
(1), with frequency 4 (i.e. quarterly observations). Although we talk about year and
period to denote a point in time, the year denotes the major time period, and the
period the minor, so that, for example, 20 (3) could be day 3 in week 20, when the
frequency is 7 (daily data). The member functions of Sample return information
about the sample. Use frequency 1 for cross-section data.
The Sample class forms the basis for the Database class and has no constructor
function of its own. Because it will be mostly used as part of the Database class,
the documentation of the two is presented together.
The Database class stores a matrix of data, together with the sample period (the
class derives from the Sample class), and the names of the variables. Functions to
create a database from disk files (ASCII, OxMetrics, PcGive, and Excel spreadsheet
formats) are provided. The Database class supports the use of daily and weekly
data.
In addition, the Database class has built-in support to select variables (for mod-
elling) from the database. Variables are selected by name, optionally with a lag
length, and allocated to a group (e.g. to distinguish between dependent and inde-
pendent variables). A sample period for the selection can be set. This selection can
then be extracted from the database. The selected sample is always adjusted so as
not to include missing values.
Some examples follow. Remember to import the database code when using this
class. This is achieved using the #import <database> statement, which also au-
tomatically inserts database.oxh.
Example

. samples/database/dbclass.ox
#include <oxstd.oxh>
#import <database> // required to use Database class

main()
{ decl dbase, y, dy, names;

dbase = new Database(); // create new object
dbase.Load("data/data.in7"); // load data

dbase.Info(); // print database info
// select variables

dbase.Select(0, { "CONS", 0, 0, "INC", 0, 0 });
dbase.Select(1, { "CONS", 1, 1, "INC", 1, 1 });
dbase.SetSelSample(1953, 1, 1992, 3); // and sample

y = dbase.GetGroup(0); // extract group 0
dy = y - dbase.GetGroup(1);

names = {"CONS", "INC", "DCONS", "DINC"};
print("\nsample variance over ",

dbase.GetSelSample(),

350 Chapter 12 Class reference

"%r", names, "%c", names, variance(y ~ dy));

println("\nnumber of observations: ", dbase.GetSize());
println("period of observation 9: ", dbase.ObsYear(9),

" (", dbase.ObsPeriod(9), ")");
println("database index 1985(4): ", dbase.GetIndex(1985,4));

delete dbase; // done with object, delete it
}
. .

The program produces:
---- Database information ----
Sample: 1953 (1) - 1992 (3) (159 observations)
Frequency: 4
Variables: 4

Variable #obs #miss type min mean max std.dev
CONS 159 0 double 853.5 875.94 896.83 13.497
INC 159 0 double 870.22 891.69 911.38 10.725
INFLAT 159 0 double -0.6298 1.7997 6.4976 1.2862
OUTPUT 159 0 double 1165.9 1191.1 1213.3 10.974

sample variance over 1953 (2) - 1992 (3)
CONS INC DCONS DINC

CONS 181.97 135.71 2.9314 3.7989
INC 135.71 114.01 1.9820 5.4127
DCONS 2.9314 1.9820 4.8536 5.5060
DINC 3.7989 5.4127 5.5060 11.183

number of observations: 159
period of observation 9: 1955 (2)
database index 1985(4): 131

The following code uses the Dow Jones data to give an example involving weekly
data. This is different from the previous database, because some years have 52 and
others 53 weeks. Therefore, the method of using a fixed frequency, as implemented
in the Sample class from which the Database class derives, does not work. Instead,
a database can now be dated:

• the first column must be of type DB DATE,
• the first column holds date indices as created by dayofcalendar,
• the optional fractional part of this indicates time,
• the first and last observation must be valid, i.e. cannot be missing.

These criteria are satisfied in dowjones.xls, and the Excel dates are translated in
Ox dates when reading the file1

Note that the underlying fixed frequency information is set to a frequency of one
(equivalent to undated data), so that GetSize and other Sample functions still work.
As the following example illustrates, there are several functions to facilitate the
handling of dated data.

1Excel inherits a mistake that was made by the Lotus developers, assuming wrongly that 1900
was a leap year. Instead, the rule for centuries is that they are only a leap year when divisible by
400. Ox takes this into account when loading and saving Excel files.

12.1 Database and Sample class 351

Example
. samples/database/dbdates.ox
#include <oxstd.oxh>
#import <database> // required to use Database class

main()
{ decl dbase, y, dy, names;

dbase = new Database(); // create new object
dbase.Load("data/dowjones.xls"); // load data

dbase.Info(); // print database info

if (!dbase.IsDated())
{

println("Expecting a dated database");
return;

}
decl dum = dbase.GetVar("d408");

println("\nSome dates: ", "%r", {"start","dummy","end"},
"%C", dbase.GetDateByIndex(

0 ~ vecindex(dum) ~ dbase.GetSize() - 1));

dbase.Select(0, { "DLDOWJONES", 0, 1 });// select vars
dbase.SetSelDates(1987, 1, 1, 1987, 12, 31);// & sample
println("\nSelecting dates: 1987-01-01 - 1987-12-31");
println("Selected sample: ", dbase.GetSelSample(),

" (database is weekly)");

delete dbase; // done with object, delete it
}
. .

The program produces:

---- Database information ----
Sample: 1980-01-02 - 1994-09-28 (770 observations)
Frequency: 1
Variables: 5

Variable #obs #miss type min mean max std.dev
Date 770 0 date 1980-01-02 1994-09-28
DOWJONES 770 0 double 762.12 2055 3975.5 961.68
LDOWJONES 770 0 double 6.6361 7.5076 8.2879 0.50376
DLDOWJONES 769 1 double -0.17377 0.0020133 0.07242 0.021404
d408 770 0 double 0 0.0012987 1 0.036014

Some dates:
start 1980-01-02
dummy 1987-10-21
end 1994-09-28

Selecting dates: 1987-01-01 - 1987-12-31
Selected sample: 1987-01-07 - 1987-12-30 (database is weekly)

352 Chapter 12 Class reference

A choice variable has type DB CHOICE. In that case, there is an array of text la-
bels associated with values: value zero corresponds to index zero in the array, etc.
The final example illustrates the use of choice labels, as well as the Recode and
Tabulate functions.
Example

. samples/database/dbchoice.ox
#include <oxstd.oxh>
#import <database> // required to use Database class

main()
{

decl db = new Database(); // create new object

db.Create(16); // 16 observations
db.Append(rann(db.GetSize(), 1), "y");
db.Shrink(4); // remove last four obs
db.Append(range(-2, db.GetSize() - 4)’ | .NaN, "x");

println("#variables: ", db.GetVarCount(),
" #observations: ", db.GetSize());

// copy x to xnew and recode
db.SetVar(db.GetVar("x"), "xnew");
db.Recode("xnew", <-.Inf,1>,1, 2,4, <3,5>,2, <7,.Inf>,3,

6,4, .NaN,5);
db.SetVarChoices("xnew", {"", "One","Two","Three","Four","Five"});
println("%c", {"x", "xnew"}, db.GetVar("x") ~ db.GetVar("xnew"));

db.Info(); // print database info

db.Tabulate("x"); // tabulations
db.Tabulate("xnew");
db.Tabulate("x", "xnew");
db.Tabulate("x", "xnew", "%");
delete db; // tidy up: delete object

}
. .

Part of the program output is:
#variables: 2 #observations: 12

x xnew
-2.0000 1.0000
-1.0000 1.0000
0.00000 1.0000
1.0000 1.0000
2.0000 4.0000
3.0000 2.0000
4.0000 2.0000
5.0000 2.0000
6.0000 4.0000
7.0000 3.0000
8.0000 3.0000

.NaN 5.0000

12.1 Database and Sample class 353

---- Database information ----
Sample: 1 - 12 (12 observations)
Frequency: 1
Variables: 3

Variable #obs #miss type min mean max std.dev
y 12 0 double -0.9176 -0.028201 1.74 0.69486
x 11 1 double -2 3 8 3.1623
xnew 12 0 choice 1 2.4167 5 1.3202

Tabulation of xnew
Counts %

One 4 33.3
Two 3 25.0
Three 2 16.7
Four 2 16.7
Five 1 8.3
Total 12 100.0

Tabulation of x against xnew
x \ xnew

One Two Three Four Five Total
-2 1 0 0 0 0 1
-1 1 0 0 0 0 1
0 1 0 0 0 0 1
1 1 0 0 0 0 1
2 0 0 0 1 0 1
3 0 1 0 0 0 1
4 0 1 0 0 0 1
5 0 1 0 0 0 1
6 0 0 0 1 0 1
7 0 0 1 0 0 1
8 0 0 1 0 0 1
Total 4 3 2 2 0 11

Tabulation of x against xnew
x \ xnew

One Two Three Four Five Total%
-2 9.1 0.0 0.0 0.0 0.0 9.1
-1 9.1 0.0 0.0 0.0 0.0 9.1
0 9.1 0.0 0.0 0.0 0.0 9.1
1 9.1 0.0 0.0 0.0 0.0 9.1
2 0.0 0.0 0.0 9.1 0.0 9.1
3 0.0 9.1 0.0 0.0 0.0 9.1
4 0.0 9.1 0.0 0.0 0.0 9.1
5 0.0 9.1 0.0 0.0 0.0 9.1
6 0.0 0.0 0.0 9.1 0.0 9.1
7 0.0 0.0 9.1 0.0 0.0 9.1
8 0.0 0.0 9.1 0.0 0.0 9.1
Total% 36.4 27.3 18.2 18.2 0.0 100.0

354 Chapter 12 Class reference

12.1.2 Database and Sample overview

Creation/Information
Database Constructor function.
Create create a database (not needed when using Load...)
Empty empties the database and sample
GetDbName get the database name
GetSize number of observations in the database
GetVarCount returns the number of variables
Info prints summary of database contents
IsEmpty returns TRUE if the database is empty
SetDbName set the database name
Tabulate cross-tabulation of discrete variables

Data input/output
Load load data set
Save save the database

Adding/removing variables/observations
Append append variable(s) to the database
Deterministic create Constant, Trend and Seasonals
Grow grows the database sample size
Recode recode observations of a variable
Remove remove variable(s) from the database
RemoveObsIf remove observations from the database
Rename rename a variable
Renew renew the observations of a variable (append if new variable)
RenewBlock renews a block of variables
SetVar sets variable(s) by name
Shrink shrinks the database
SortBy sort the database by a variable

Extraction
GetAll returns the whole database data matrix
GetAllNames returns all the variable names
GetSample returns text with database sample
GetSampleByIndex virtual funcrion returning sample text
GetVar gets variable(s) by name
GetVarByIndex gets variable(s) by database index
GetVarIndex gets the database index of a named variable
GetVarNameByIndex gets variable name(s) by database index

Database sample information: Sample class
GetFrequency data frequency
GetIndex index of time point
GetPeriod1 period of first observation

12.1 Database and Sample class 355

GetPeriod2 period of last observation
GetSize number of observations in sample (the database)
GetYear1 year of first observation
GetYear2 year of last observation
ObsPeriod finds period of observation index
ObsYear finds year of observation index

Dated data, choice data, and variable types
GetDateByIndex get the date of a database index
GetDates returns date variable or <> if undated
GetIndexByDate get the index for a date (must be dated)
GetIndexByDates get the indices for a date range (must be dated)
GetVarType gets the variable type
GetVarTypeByIndex gets the variable type
IsDated returns TRUE if the database is dated
SetDates sets the date variable
GetObsLabel gets the string representation of an observation
GetVarChoices gets the choice labels (array of strings)
GetVarChoicesByIndex gets the choice labels (array of strings)
SetVarChoices sets the choice labels (array of strings)
SetVarChoicesByIndex sets the choice labels (array of strings)
SetVarType sets the variable type
SetVarTypeByIndex sets the variable type

Variable selection
DeSelect remove the current variable and sample selection
DeSelectByIndex remove a variable (by database index) from selection
DeSelectByName remove a named variable from selection
FindSelection find a variable name with lag in the selection
GetGroup get a group selection matrix
GetGroupLag get group with specific lag range
GetGroupLagNames get the names of group with specific lag range
GetGroupNames get the names of variables in a group
GetMaxGroupLag gets maximum lag length in group
GetMaxSelLag get maximum lag length
GetSelInfo get array with selection info
Select select variables into a group
SelectByIndex select variables by their database index
SetSelInfo set array with selection info

Variable and sample selection
ForceSelSample forces a selection sample
ForceSelSampleByIndexforces a selection sample
GetSelEnd index of last selection observation
GetSelSample get text with selected sample
GetSelSampleMode returns the current selection sample mode

356 Chapter 12 Class reference

GetSelStart index of first selection observation
SetSelDates select a sample by year, month, day
SetSelSample select a sample (fixed frequency)
SetSelSampleByDates select a sample by date value
SetSelSampleByIndex select a sample by datebase indices
SetSelSampleMode set the selection sample mode

Database data members (all protected)
m mData data matrix (T × k)
m sDbName database name (string)
m asNames variable names (array with k strings)
m iSampleSelMode sample selection mode (argument to findsample in

SetSelSample)
m vVarType variable types (1× k)
m aasChoices array[k] to store array of strings if choice type

Remainder is for sample selection:
m mLagsel lag length of each entry in m mVarsel (1× s matrix)
m mSelgroup group number of each entry in m mVarsel (1× s matrix)
m iT1sel row index in m mData of first selected observation (int)
m iT2sel row index in m mData of last selected observation (int)
m mVarsel variable selection (1× s matrix with selection)

the selection consists of indices in m mData and m asNames

Sample data members
m iFreq data frequency (int)
m iYear1 year of first observation (int)
m iPeriod1 period of first observation (int)
m iYear2 year of last observation (int)
m iPeriod2 period of last observation (int)

Database::Append 357

12.1.3 Database and Sample function members

Database::Append

Database::Append(const mNew, const asNew);

Database::Append(const mNew, const asNew, const iT1);

mNew in: T × k matrix with the new variables
asNew in: array with k variable names of the new variables, may be a

single string if k = 1
iT1 in: starting observation index in database (0 if missing)

No return value.
Description

Appends the k new variables to the database, storing the observations and vari-
able names. It is an error if the variable already exists (use Renew or SetVar
instead), or if the new variable has more observations than the database (use
Grow first or SetVar instead).
The first observation has database index iT1 (omit the third argument, or use 0
if the variables start at the same sample point as the database), the last is the end
of the database sample, or the end of mNew, whichever comes first.
The following error and warning messages can occur:

One data column expected
Need same number of names as variables
Argument asNew has wrong type
Variable(s) already exist(s), use Renew()
Append() warning: cannot grow sample, use Grow()

Example
The following example shows how you could load a matrix file into a database,
assuming that that matrix file contains a T × 2 matrix:

decl dbase, mx;

dbase = new Database();
mx = loadmat("./mydata.mat");
dbase.Create(1,1,1,rows(mx),1);
dbase.Append(mx, {"Y1", "Y2"}, 0);

Here the database is created with frequency 1 (annual data), and first observation
year 1, period 1. We give the two variables the names “Y1” and “Y2”, and match
the first observation of mx to the first in the database (which has index 0).

Database::Create

Create(const iFreq, const iYear1, const iPeriod1, const iYear2,

const iPeriod2);

Create(const iFreq, const iYear1, const iPeriod1, const cT);

Database::Create(const cT);

358 Chapter 12 Class reference

iFreq in: int, frequency
iYear1 in: int, start year
iPeriod1 in: int, start period
iYear2 in: int, end year
iPeriod2 in: int, end period
cT in: int, number of observations

No return value.
Description

Creates a database. Use this when the database is not to be loaded from disk.
The Append member function allows adding data to the database. Use Empty

first if the database is not empty.
Create(cT) is equivalent to Create(1, 1, 1, cT, 1).

Database::Database

Database::Database();

No return value.
Description

Constructor. Calls Empty and sets the sample selection mode to SAM ALLVALID.

Database::DeSelect

Database::DeSelect();

No return value.
Description

Clears the current variable and sample selection completely.

Database::DeSelectByIndex, Database::DeSelectByName

Database::DeSelectByIndex(const iSel);

Database::DeSelectByName(const sVar, const iGroup, const iLag);

iSel in: int or matrix: selection indices of variables to delete
sVar in: string: database name of variable to delete
iGroup in: int: group identifier of variable to delete
iLag in: int: lag length of variable to delete

No return value.
Description

Delete specific variable(s) from the current selection. The selection sample is
not changed.

Database::Deterministic

Database::Deterministic(const iCseason);

Database::Empty 359

iCseason in: 0: create n normal seasonals
1: create n centred seasonals
2: create 1 normal seasonal
3: create 1 centred seasonal
< 0: do not create any seasonals

No return value.
Description

Appends constant, trend and seasonals to the database. These variables are
named Constant, Trend and Season Season 1, . . . , Season x, where x is
the frequency.
Season has a 1 in quarter 1 (for quarterly data), and zeros elsewhere, Season 1

has a 1 in quarter 2, etc.
If iCseason is 1, the seasonals are centred (with quarterly observations, for
quarter 1: 0.75, −0.25, −0.25, −0.25, . . .), in which case the names are
CSeason, CSeason 1, . . . , CSeason x.
When a single variable is created, the names are Seasonal and CSeasonal

respectively.

Database::Empty
Database::Empty();

No return value.
Description

Empties the database.

Database::FindSelection
Database::FindSelection(const sVar, const iLag);

sVar in: string, variable name
iLag in: int, lag length

Return value
Returns the selection index of the specified variable with the specified lag, or –1
if it is not selected.

Database::ForceSelSample, Database::ForceSelSampleByIndex
Database::ForceSelSample(const iYear1, const iPeriod1,

const iYear2, const iPeriod2);

Database::ForceSelSampleByIndex(const iT1, const iT2);

iYear1 in: int, start year of selection, use –1 for earliest year
and period

iPeriod1 in: int, start period of selection
iYear2 in: int, end year of selection, use –1 for latest year

and period
iPeriod2 in: int, end period of selection
iT1 in: int, starting observation index in database
iT2 in: int, final observation index in database

360 Chapter 12 Class reference

Return value
Returns the number of observations in the sample.

Description
Sets a selection a sample for the variables previously selected with the
Select function. This function does not check for missing values. Use
SetSelSample() to set a sample with checking for missing values.

Database::GetAll, Database::GetAllNames
Database::GetAll();

Database::GetAllNames();

Return value
GetAll returns the whole database matrix. GetAllNames returns an array of
strings with all the variable names.

Database::GetDateByIndex
Database::GetDateByIndex(const iT1)

iT1 in: int, observation index in database
Return value

Returns the date at the specified index (the same as GetDates()

iT1

). This can be printed with the "%C" format, or translated using
dayofcalendar. The database must be dated.

Database::GetDates
Database::GetDates();

Return value
Returns a column vector with the date variable or <> if the database is undated.

Database::GetDbName
Database::GetDbName();

Return value
Returns the current database name.

Sample::GetFrequency
Sample::GetFrequency();

Return value
The data frequency.

Database::GetGroup 361

Database::GetGroup, Database::GetGroupLag

Database::GetGroup(const iGroup);

Database::GetGroupLag(const iGroup, const iLag1, const iLag2);

iGroup in: int, group number
iLag1 in: int, first lag
iLag2 in: int, last lag

Return value
GetGroup returns a T × n matrix with all selected variables of group iGroup.
GetGroupLag returns only those with the specified lag length. If no database
sample has been selected yet, the return value is a 0.

Description
GetGroup extracts all selected variables of group iGroup.
GetGroupLag extracts all selected variables of group iGroup which have a lag
in iLag1 . . .iLag2. The selection sample period must have been set.

Database::GetGroupLagNames, Database::GetGroupNames

Database::GetGroupLagNames(const iGroup, const iLag1, const iLag2,

aasNames);

Database::GetGroupNames(const iGroup, const aasNames);

iGroup in: int, group number
iLag1 in: int, first lag
iLag2 in: int, last lag
aasNames in: array

out: will hold an array of strings with the names of
the variables with specified group and lag

No return value.
Description

GetGroupLagNames gets the names of all selected variables of group iGroup

which have a lag in iLag1 . . .iLag2. The selection sample period must have
been set. GetGroupNames gets all the variables of the specified group.
The following code section gets all names of X VAR variables and prints them.

decl as, i;
db.GetGroupNames(X_VAR, &as);
for (i = 0; i < columns(as); ++i)

println(as[i]);

Sample::GetIndex

Sample::GetIndex(const iYear, const iPeriod);

iYear in: int, year
iPeriod in: int, period

Return value
The index of the specified time point.

362 Chapter 12 Class reference

Database::GetIndexByDate, Database::GetIndexByDates
Database::GetIndexByDate(const dDate1)

Database::GetIndexByDates(const dDate1, const dDate2)

dDate1 in: double, date value
dDate2 in: double, date value

Return value
GetIndexByDate returns the index closest to the specified date.
GetIndexByDates returns the start and end indices of the specified period as an
array of two integers. This can be used, e.g., as [t1,t2]= GetIndexByDates(

dayofcalendar(1990, 1, 1), dayofcalendar(1990, 12, 31)).

Database::GetMaxGroupLag, Database::GetMaxSelLag
Database::GetMaxSelLag();

Database::GetMaxGroupLag(iGroup);

iGroup in: int, group number
Return value

GetMaxSelLag returns the highest lag in all selected variables.
GetMaxGroupLag returns the highest lag in selected variables of the specified
group.

Description
Gets lag information on the selection.

Database::GetObsLabel
Database::GetObsLabel(sVar, const iT);

sVar in: string, variable name
iT in: int, observation index

Return value
Return a string with the text of the observation, taking into account whether it is
a choice, date or normal value.

Sample::GetPeriod1, Sample::GetPeriod2
Sample::GetPeriod1();

Sample::GetPeriod2();

Return value
GetPeriod1 returns the period of the first observation.
GetPeriod2 returns the period of the last observation.

Database::GetSample
Database::GetSample();

virtual Database::GetSampleByIndex(const iT1, const iT2)

iT1 in: int, first observation index in database
iT2 in: int, last observation index in database

Database::GetSelEnd 363

Return value
GetSample returns a string with the full database sample, e.g. "1980(1) -

1990(2)". GetSampleByIndex is called to create the text.
GetSampleByIndex writes the sample text for the sample with database indices
iT1, iT2.
If iT1< 0 the output is "no sample"; if iT2< 0 the end-period is omitted, so
only a sample date is returned.

Database::GetSelEnd, Database::GetSelStart
Database::GetSelStart();

Database::GetSelEnd();

Return value
GetSelStart returns the database index of the first observation of the selected
sample.
GetSelEnd returns the database index of the last observation of the selected
sample.

Database::GetSelInfo
Database::GetSelInfo();

Return value
Returns a 1× 5 array with the selection information as follows (c is the number
of selected variables):

0 1× c matrix with database indices of selected variables
1 1× c matrix with group index of selected variables
2 1× c matrix with lag lengths of selected variables
3 integer, first selection observation
4 integer, last selection observation

Database::GetSelSample
Database::GetSelSample();

Return value
GetSelSample returns a string with the text of the selected database sample,
e.g. "1980(1) - 1984(2)". GetSampleByIndex is called to create the text.

Database::GetSelSampleMode
Database::GetSelSampleMode();

Return value
GetSelSampleMode returns the current sample selection mode (also see
findsample), one of: SAM ALLVALID , SAM ENDSVALID, SAM ANYVALID .

Sample::GetSize
Sample::GetSize();

364 Chapter 12 Class reference

Return value
The number of observations in the sample.

Database::GetVar, Database::GetVarByIndex
Database::GetVar(const sName);

Database::GetVarByIndex(const iVar);

sName in: string or array of strings with variable names
iVar in: int or matrix of database indices of variables

Return value
Returns a matrix with the specified variable(s), or <> if the variable(s) cannot be
found.

Database::GetVarChoices, Database::GetVarChoicesByIndex
Database::GetVarChoices(const sVar);

Database::GetVarChoicesByIndex(const iVar);

iVar in: int or matrix of database indices of variables
sVar in: string or array of strings with variable names

Return value
Return an array of strings with the choice labels; if multiple variables are speci-
fied the return value is an array of arrays of strings.

Database::GetVarCount
Database::GetVarCount();

Return value
Returns the number of variables in the database.

Database::GetVarIndex
Database::GetVarIndex(const asName);

asName in: string, or array of strings: variable names
Return value

Returns the database indices of the specified variable(s), or the empty matrix if
none are found.

Database::GetVarNameByIndex, Database::GetVarType, Get-
VarTypeByIndex
Database::GetVarNameByIndex(const iVar);

Database::GetVarType(const sVar);

Database::GetVarTypeByIndex(const iVar);

iVar in: int or matrix of database indices of variables
sVar in: string or array of strings with variable names

Return value
GetVarNameByIndex returns an array with the names of the specified vari-
able(s). If iVar is a scalar, a single string is returned.

Sample::GetYear1 365

GetVarTypeByIndex and GetVarType return the variable type, one of:
DB DOUBLE, DB DATE , DB CHOICE.

Sample::GetYear1, Sample::GetYear2
Sample::GetYear1();

Sample::GetYear2();

Return value
GetYear1 returns the year of the first observation.
GetYear2 returns the year of the last observation.

Database::Grow
Database::Grow(const cTadd);

cTadd in: int, number of observations to grow database sample by (>
0: cTadd observations are added at the end; <0: -cTadd

observations are added at the beginning)
No return value.

Database::Shrink
Database::Shrink(const cTdel);

cTdel in: int, number of observations to shrink database sample by (>
0: cTdel observations are removed at the end; <0: -cTdel
observations are removed at the beginning)

No return value.

Database::Info
Database::Info();

No return value.
Description

Prints information on the contents of the database.

Database::IsDated
Database::IsDated();

Return value
TRUE if the database is dated, FALSE otherwise.

Database::IsEmpty
Database::IsEmpty();

Return value
TRUE if the database is empty, FALSE otherwise.

366 Chapter 12 Class reference

Database::Load
Database::Load(const sFilename);

sFilename in: string, filename
Return value

FALSE if the loading failed, TRUE otherwise.
Description

Load creates the database and loads the specified data file from disk. The file
type is derived from the extension. Supported are: .oxdata, .csv, .csv.zip,
.dat (see below), .dta, .in7, .xlsx.

A .dat file is human-readable, with the data ordered by variable, and each variable
preceded by a line of the type:
> name year1 period1 year2 period2 frequency.
For example:
>CONS 1953 1 1955 4 4

890 886 886 884
885 884 884 884
887 889 890 894

The Database class can read and write the following spreadsheet files:
• comma-separated: .csv, .csv.zip, .zip;
• Excel Open XML: .xlsx;

provided the following convention is adopted:
• Ordered by observation (that is, variables are in columns).
• Columns with variables are labelled.
• There is an unlabelled column with the dates (as a string), in the form year–

period (the – can actually be any single character), for example, 1980–1 (or:
1980Q1 1980P1 1980:1 etc.). This doesn’t have to be the first column.

• The data form a contiguous sample (non-numeric fields are converted to missing
values, so you can leave gaps for missing observations).

For example, the format for writing is (this is also the optimal format for reading):

A B C D
1 CONS INFL DUM
2 1980-1 883 2.7 3
3 1980-2 884 3.5 5
4 1980-3 885 3.9 1
5 1980-4 889 2.6 9
6 1981-1 900 3.4 2

If these conventions are not adopted the file can still be read, but you will have to
check the final result.

See also
loadmat

Sample::ObsPeriod
Sample::ObsPeriod(iObs);

Sample::ObsYear 367

iObs in: int, observation index
Return value

The period of the observation index.

Sample::ObsYear
Sample::ObsYear(iObs);

iObs in: int, observation index
Return value

The year of the observation index.

Database::Recode
Database::Recode(const sVar, ...);

sVar in: string, name of variable to recode
... in: comma-separated pairs of recoding values: old-value, new

value
No return value.
Description

recoding arguments example
scalar old-value, scalar new value 2, 1

1× 2 matrix m, scalar new value <-.Inf,2>, 1

old value is closed interval [m[0],m[1]]

Note that the intervals are closed, and that recoding processes the arguments from
left to right.
For example

db.Recode("x", <-.Inf,2>,1, <3,5>,2, 6,3);

Is equivalent to

decl x = db.GetVar("x");
x = x .<= 2 .? 1 .: x .>= 3 .|| x .<= 5 .? 2 .: x.== 6 .? 3 .: x;
db.SetVar(x, "x");

A further example is given in samples/database/dbchoice.ox, see §12.1.1.

Database::Remove, Database::RemoveObsIf
Database::Remove(const sName);

Database::RemoveObsIf(const vRemove)

sName in: string or array of strings, variable name(s)
vRemove in: matrix T × 1 or 1× T matrix, non-zero at position of obser-

vations to remove, 0 for observations to keep
No return value.
Description

Removes the named variable or specified observations from the database.

368 Chapter 12 Class reference

Database::Rename
Database::Rename(const sNewName, const sOldName);

sNewName in: string or array of strings, new name(s)
sOldName in: string or array of strings, old name(s) of database

variable(s)
No return value.
Description

Renames a database variable. To rename more than one variable at once, both most
be arrays of the same size, and all old names must exist in the database.

Database::Renew
Database::Renew(const mNew, const asName);

Database::Renew(const mNew, const asName, const iT1);

mNew in: T × k matrix
asName in: array with k variable names, may be a single string if k = 1
iT1 in: first observation (0 if argument is missing)

No return value.
Description

Renews the observations on the named variable. The first new observation has
database index iT1, the last is the end of the database sample, or the end of mNew,
whichever comes first.
If a non-existent variable is renewed, the variable is created first using Append. The
database sample can be changed by Grow or SetVar, not by Renew or Append. If
that fails, the following error message will appear:

Renew(): could not append variable(s)

Database::RenewBlock
RenewBlock(const mNew, const iVarIndex);

mNew in: T × k matrix
iVarIndex in: int, database index of first variable to renew

No return value.
Description

Renews the observations on the k variables starting from the first, without any
checking for existence.

Sample::Resample
Sample::Resample(const iFreq, const iYear1, const iPeriod1);

iFreq in: int, frequency
iYear1 in: int, start year
iPeriod1 in: int, start period

No return value.

Database::Save 369

Description
Changes the frequency and start year(period). The sample size is unchanged, so the
end year(period) is derived from that.

Database::Save
Database::Save(const sFilename);

sFilename in: string, filename
No return value.
Description

Save derives the file type from the file extension (using .oxdata if no extension is
given). Supported are: .csv, .csv.zip, .dat, .dta, .in7, .xlsx.
Using .dat saves the database as a formatted ASCII file. Also see under Load.

See also
savemat

Database::Select, Database::SelectByIndex
Database::Select(const iGroup, const aSel);

Database::SelectByIndex(const iGroup, const iVar, const iLag0,

const iLag1);

iGroup in: int, group number
aSel in: 3k array, specifying name, start lag, end lag
iVar in: int: database index of variable to select

matrix: database index of k variables to select
iLag0 in: int: initial lag length of variables to select

matrix: k initial lag lengths of variables to select
iLag1 in: int: final lag length of variables to select

matrix: k final lag lengths of variables to select
No return value.
Description

Selects variables by name and with specified lags, and assigns the iGroup number
to the selection. The aSel argument of Select is an array consisting of sequences
of three values: name, start lag, end lag. For example:

Select(0, {"CONS", 0, 0}); // select CONS as group 0
// from lag 0 to 0

Select(0, {"INC", 0, 0}); // also select INC as group 0
Select(1, {"CONS", 1, 1, "INC", 1, 1});

// the first lag of CONS and INC as group 1

After a sample period is set, the selection can be extracted from the database.
If CONS and INC are variables 0 and 1 in the database, the same selection could be
written as:

// select CONS,INC as group 0 from lag 0 to 0
SelectByIndex(0, <0,1>, 0, 0);

// the first lag of CONS and INC as group 1
SelectByIndex(1, <0,1>, 1, 1);

370 Chapter 12 Class reference

Database::SetDbName
Database::SetDbName(const sName);

No return value.
Description

Sets the current database name.

Database::SetDates
Database::SetDates(const vDates);

No return value.
Description

If the database is not yet dated, vDates is set as the date column (the first column).
Otherwise vDates replaces the current date column.

Database::SetSelInfo
Database::SetSelInfo(const asInfo);

asInfo in: 1× 5 array with selection info
Description

Sets the selection based on the specified input array. No checking is done on the
input values.
The selection information should be organized as follows (c is the number of se-
lected variables):

0 1× c matrix with database indices of selected variables
1 1× c matrix with group index of selected variables
2 1× c matrix with lag lengths of selected variables
3 integer, first selection observation
4 integer, last selection observation

The last two arguments may be omitted, in which case a call to SetSelSample may
be required.

Database::SetSelDates
Database::SetSelDates(const iYear1, const iMonth1, const iDay1,

const iYear2, const iMonth2, const iDay2)

iYear1 in: int, start year of selection
iMonth1 in: int, start month of selection
iDay1 in: int, start day of selection
iYear2 in: int, end year of selection
iMonth2 in: int, end month of selection
iDay2 in: int, end day of selection

Return value
Returns the number of observations in the sample.

Description
This is the equivalent of SetSelSample that can be used when the database is dated.

Database::SetSelSampleByDates 371

Selects a sample for the variables previously selected with the Select function.
The actually selected sample will be the largest starting from the specified starting
date (but not exceeding the specified end date) without any missing values when
using the default selection mode. Use SetSelSampleMode to change the selection
mode. Use DeSelect to deselect the current sample and variables.

Database::SetSelSample(const iYear1, const iPeriod1,

const iYear2, const iPeriod2);

iYear1 in: int, start year of selection, use –1 for earliest year
and period

iPeriod1 in: int, start period of selection
iYear2 in: int, end year of selection, use –1 for latest year

and period
iPeriod2 in: int, end period of selection

Return value
Returns the number of observations in the sample.

Description
Selects a sample for the variables previously selected with the Select function.
The actually selected sample will be the largest starting from the specified starting
date (but not exceeding the specified end date) without any missing values when
using the default selection mode. Use SetSelSampleMode to change the selection
mode. Use DeSelect to deselect the current sample and variables.

Database::SetSelSampleByDates, Database::SetSelSampleByIndex
Database::SetSelSampleByDates(const dDate1, const dDate2);

Database::SetSelSampleByIndex(const iT1, const iT2);

dDate1 in: double, date value
dDate2 in: double, date value
iT1 in: int, first observation index in database
iT2 in: int, last observation index in database

Return value
Returns the number of observations in the sample.

Database::SetSelSampleMode
Database::SetSelSampleMode(const iMode);

iMode in: int, the new sample selection mode, see
findsample

No return value.

Database::SetVar
Database::SetVar(const mNew, const asName);

mNew in: T × k matrix
asName in: array with k variable names, may be a single string if k = 1

No return value.

372 Chapter 12 Class reference

Description
If any of the named variables exist in the database, the content is changed, otherwise
the new variables are appended. If T is larger than the sample size of the database,
the database is extended (unlike Renew); if it is shorter, the new (or changed) vari-
able will have missing values for the remainder. If the database has not been created
yet, it is created with frequency of unity (annual/undated).

Database::SetVarChoices, Database::SetVarChoicesByIndex

Database::SetVarChoices(const sVar, const asChoices);

Database::SetVarChoicesByIndex(const iVar, const asChoices);

iVar in: int, database index of variable
sVar in: string, name of variable
asChoices in: array of strings, choice labels

No return value.

Description
Makes the variable in a choice variable (DB CHOICE), and assigns the array of labels.
The label for value i is asChoices[i]. Choice labels are only preserved in in7, xlsx
and dta files.
If asChoices is an empty array, the choice labels are removed and the variable is
changed into a normal variable (DB DOUBLE).

Database::SetVarType, Database::SetVarTypeByIndex

Database::SetVarType(const sVar, const iType);

Database::SetVarTypeByIndex(const iVar, const iType);

Database::SetVarTypeByIndex(const
iVar, const
iType);
sVar

in: string or array of strings with variable names

iVar in: int or matrix of database indices of variables
iType in: int, type DB DOUBLE (the default), DB DATE, DB CHOICE

No return value.

Description
Sets the variable type.

Database::SortBy

Database::SortBy(const sVar)

sVar in: string, name of variable

No return value.

Description
Sort the database by a variable.

Database::Tabulate 373

Database::Tabulate
Database::Tabulate(const sX);

Database::Tabulate(const sX, const sY);

Database::Tabulate(const sX, const sY, const sOption);

sX in: string, name of first variable
sY in: string, name of second variable
sOption in: strings, ”%” to print percentages instead of counts

Return value
Returns an array of two elements with the vector of values and corresponding counts
(tabulation), or an array of three elements with the vector of x-values (row), y-values
(column) and corresponding matrix of counts (cross-tabulation).

Description
Tabulates one variable or cross-tabulates two variables. An example is given in
samples/database/dbchoice.ox, see §12.1.1.

374 Chapter 12 Class reference

12.2 Modelbase : Database class

12.2.1 Introduction

The Modelbase class derives from the Database class to implement model estima-
tion features. Modelbase is not intended to be used directly, but as a base for a more
specialized class. A range of virtual member functions allows for customization of
the class. Modelbase facilitates interactive use with OxMetrics through the OxPack
program. Dialogs and a test menu are easily created by overriding just a few virtual
functions. More information is on using Modelbase with OxPack is in the separate Ox
Appendices.

In most cases, model estimation involves the following steps (key virtual functions
are given in parentheses):

• Call constructor (Modelbase), specify package name and version (GetPackage,
GetVersion).

• Initialize data: extract estimation data from underlying database (InitData).
• Initialize parameters (InitPar): specify the number of parameters; set fixed pa-

rameters (if any); determine starting values (if necessary).
• Estimate model (Estimate or DoEstimation).
• Produce model output and evaluation (GetParNames, Covar, Output, etc.).
Modelbase has a few essential properties to track this procedure:

Model status GetModelStatus, SetModelStatus
Maximization method GetMethod, SetMethod
Estimation result GetResult, SetResult
Parameters GetPar, SetPar, GetParCount, SetParCount
Fixed/Free parameters GetFreeParCount, GetFreePar, SetFreePar,

FixPar, FreePar
Covariance Covar

The following example shows a minimal Modelbase implementation.
Example

. samples/database/mbclass.ox
#include <oxstd.oxh>
#import <modelbase>

class Ols : Modelbase
{

decl m_mRes;
decl m_dSigmaSqr;

Ols();
GetPackageName();
GetPackageVersion();
DoEstimation(vP);

};

Ols::Ols()
{

Modelbase();
}
Ols::GetPackageName()

12.2 Modelbase : Database class 375

{
return "Ols";

}
Ols::GetPackageVersion()
{

return "1.0";
}
Ols::DoEstimation(vP)
{

decl cp = columns(m_mX);
SetParCount(cp);

olsc(m_mY, m_mX, &vP, &m_mCovar);
m_mRes = m_mY - m_mX * vP;
m_dSigmaSqr = m_mRes’m_mRes / (rows(m_mY) - cp);
m_mCovar *= m_dSigmaSqr;

SetResult(MAX_CONV);

return vP;
}

main()
{

decl ols = new Ols();

ols.Load("data/data.in7");
ols.Deterministic(FALSE);

ols.Select("Y", {"CONS", 0, 2});
ols.Select("X", {"Constant", 0, 0, "INC" , 0, 2});

ols.Estimate();
}
. .

The program produces:

Ols package version 1.0, object created on 8-12-2005

---- Ols ----
The estimation sample is: 1953(3) - 1992(3)
The dependent variable is: CONS (data/data.in7)

Coefficient Std.Error t-value t-prob
CONS_1 1.31039 0.07564 17.3 0.000
CONS_2 -0.352108 0.07915 -4.45 0.000
Constant -2.17250 11.19 -0.194 0.846
INC 0.508481 0.03606 14.1 0.000
INC_1 -0.577251 0.05816 -9.92 0.000
INC_2 0.112122 0.05325 2.11 0.037

log-likelihood .NaN
no. of observations 157 no. of parameters 6
AIC.T .NaN AIC .NaN
mean(CONS) 875.78 var(CONS) 182.397

At first sight it may be somewhat surprising how much this program achives with

376 Chapter 12 Class reference

so little coding. But, with an understanding of virtual functions, the documentation
below, and the actual source code of Modelbase (in ox\src), it should be possible to
implement a Modelbase derived package. Other examples of the use of Modelbase
are the Arfima and DPD packages.

12.2.2 Modelbase overview

Functions which are used in a minimal implementation are marked as follows:
∗ virtual function to override,

∗∗ need to be called as part of the estimation procedure.
general
Modelbase constructor
ClearEstimation removes results fom previous estimation
ClearModel sets model status to MS NONE

FindGroup translates variable status group string to index
FindMethod translates estimation method string to index
GetGroupLabels∗ get the array of labels for Y VAR,X VAR,... constants
GetMethod get the estimation method
GetMethodLabel get the label for the current estimation method
GetModelLabel get the label for the model
GetModelLabels∗ get the array of label for the model estimation constants
GetModelStatus get the model status (MS)
GetPackageName∗ returns name of the package
GetPackageVersion∗ returns version of the package
GetResult get the estimation result
Grow extend database and update the deterministic terms
Init resets all variables to default
IsUnivariate returns TRUE if only one Y VAR allowed
Select select variables into a group
SelectByIndex select variables by their database index
SetForecasts set the number of forecasts
SetMethod set the estimation method
SetModelStatus∗∗ set the model status (MS)
SetPrint switch printing on or off
SetResult∗∗ set the estimation result
SetRecursive set the number of recursive steps
ShowBanner static method to switch off creation banner

parameter related
FixPar fixes parameters
FreePar frees parameters
GetFreePar get the vector of free parameters, p× 1
GetFreeParCount get number of free parameters p
GetFreeParNames get the names of free parameters, array of length p
GetPar get the vector of all parameters, q × 1
GetParCount get number of parameters q (including fixed)

12.2 Modelbase : Database class 377

GetParNames∗ get the names of all parameters, array of length q
GetParStatus returns full parameter info
GetParTypes returns array of type letters for each model variable
MapParToFree return the free parameters from the argument
ResetFixedPar reset the values of the fixed parameters
SetFreePar set the free parameters
SetPar∗∗ set the full parameter vector
SetParCount∗∗ set the number of parameters q (including fixed)

move up in model status
DoEstimation low level estimate
Estimate high level estimate
InitData get the data: Y,X
InitPar initializes the parameter values
SetStartPar set the starting values

covariance evaluation
Covar∗ sets m mCovar

get model results
GetCovar returns p× p covariance matrix
GetCovarRobust returns <> or p× p robust covariance matrix
GetLogLik return the log-likelihood, m dLogLik

GetResVar returns residual variance, n× n
GetResiduals returns residual matrix, T × n
GetStdErr returns the std.errors (0 for fixed) q × 1
GetStdErrRobust returns <> or robust standard errors
GetcDfLoss returns degrees of freedom lost (for tailt, AIC)
GetcT returns actual no of observations used, m cT

other get functions
GetPrint returns current print setting
GetX returns X matrix
GetY returns Y matrix
GetcX returns no of X variables
GetcY returns no of Y variables
GetcYlag returns no of lags of Y

post estimation
DbDrawTMatrix draws using the database sample information
GetForecastData returns available data over a forecast period
Output prints output
OutputHeader prints output header, returns TRUE to print rest
OutputPar prints parameter estimates
OutputLogLik prints log-likelihood, AIC, etc.
OutputMax prints maximization result and starting values

378 Chapter 12 Class reference

PrintTestVal prints a test statistic
TestRestrictions tests restrictions on the parameters

OxPack related, see the separate Ox Appendices for documentation
GetLongRunInfo returns 0 or info on long-run
GetLongRunNames returns 0 or names of long-run parameters
ReceiveData receive the data for estimation
ReceiveDialog receive output from a dialog
ReceiveModel receive the model specification
SendDialog send a dialog
SendFunctions send specification of special functions
SendMenu send a menu list
SendMethods send the estimation methods
SendResults send an output variable
SendSpecials send the names of special variables
SendVarStatus send the types of variables

12.2.3 Modelbase function members

Modelbase::ClearEstimation, Modelbase::ClearModel
virtual ClearEstimation()

virtual ClearModel();

No return value.
Description

ClearEstimation() clears the model estimation settings. ClearModel() sets the
model status to MS NONE, and calls ClearEstimation().

Modelbase::Covar
virtual Covar();

No return value.
Description

In some models, the evaluation of the variance-covariance matrix of the estimated
parameters is costly, therefore, this matrix is only computed on demand: when the
covariance matrix does not yet exist, Covar() is called to compute it.
By default, the m mCovar member variable of Modelbase is −1 when estima-
tion commences (through a call to ClearEstimation()). Covar() should set
m mCovar to the variance-covariance matrix (but Estimate() or DoEstimation()
may also do this, as in the example above). Covar() can optionally set
m mCovarRobust as well. If the covariance matrix does not exist, Covar() is au-
tomatically called when using GetCovar(), GetCovarRobust(), GetStdErr(),
or GetStdErrRobust().
This procedure ensures that the covariance is only computed once when required,
and not at all when not required (in some Monte Carlo experiments, for example).

Modelbase::DbDrawTMatrix 379

Modelbase::DbDrawTMatrix
DbDrawTMatrix(const iArea, const mYt, const asY, const iT1);

DbDrawTMatrix(const iArea, const mYt, const asY, const iT1,

const iSymbol, const iIndex);

iArea in: int, area index
mYt in: m× T matrix with m y variables
asY in: array of strings (holds variable names), or 0 (no names), or a

string (when only one variable to graph)
iT1 in: int, database index of first observation
iSymbol in: int, 0: draw line, 1: draw symbols, 2: draw both (optional

argument, default is 0).
iIndex in: int, line index for first row, see Table 10.4, (optional argu-

ment, default is 2). Each subsequent row will have the next
index.

No return value.
Description

This is equivalent to DrawTMatrix, but using sample information from the underly-
ing database. The function will automatically draw a proper date axis if the database
is dated.

Modelbase::DoEstimation, Modelbase::Estimate
virtual DoEstimation(vPar);

virtual Estimate();

vPar in: matrix, vector of starting values (free parame-
ters), p× 1

Return value
DoEstimation() returns:

• Direct estimation: p× 1 matrix with the estimated parameters.
• Iterative estimation: array of length 3, with respectively:

– p× 1 matrix with the estimated parameters,
– string, name of the iterative procedure ("BFGS" for example),
– TRUE if numerical derivatives were used, FALSE otherwise.

Estimate() returns TRUE if estimation was successful, FALSE otherwise.
Description

There are two ways to implement estimation:
• Override DoEstimation(), which is called from Modelbase::Estimate. In

this case, the derived DoEstimation() returns the estimated parameters, and
sets m iResult, see SetResult(). Prior to calling DoEstimation(),
Modelbase::Estimate() will call InitData(), InitPar() and
ClearEstimation(). Afterwards, it will update the model status, and, if
estimation was successful, Output(), and, if iterative estimation was used:
OutputMax().

• Override Estimate(), in which case DoEstimation() is not automatically
called. This provides complete control, but requires more code. For example, a

380 Chapter 12 Class reference

slightly simplified version of Modelbase::Estimate() is given below, show-
ing the essential properties which must be set:

– estimated free parameters: SetFreePar(),
– m iResult, see SetResult()
– m iModelStatus, see SetModelStatus().

Modelbase::Estimate()
{ decl vpstart, vpfree, estout;

if (!InitPar()) // calls InitData() if necessary
return FALSE;

vpstart = GetFreePar(); // map pars to estimation format
estout = DoEstimation(vpstart); // do the estimation
vpfree = isarray(estout) ? estout[0] : estout;

SetFreePar(vpfree);// map estimated pars to normal format

if (m_iResult >= MAX_CONV && m_iResult < MAX_MAXIT)
m_iModelStatus = MS_ESTIMATED;

else
m_iModelStatus = MS_EST_FAILED;

if (m_fPrint)
{ Output();

if (isarray(estout))
OutputMax(estout[1],m_iResult,vpstart,estout[2]);

}
return m_iModelStatus == MS_ESTIMATED;

}

Modelbase::FindGroup, Modelbase::FindMethod

Modelbase::FindGroup(const theGroup);

Modelbase::FindMethod(const theMethod);

theGroup in: int, int or string, status group
theMethod in: int or string, estimation method

Return value
Returns an integer (an integer argument is passed through, a string looked up in
GetGroupLabels, GetMethodsLabels)

Modelbase::FixPar

FixPar(const iP, const dFix);

iP in: int, index of parameter to fix
dFix in: double, value to fix parameter at

No return value.
Description

FixPar() is used to fix a parameter at the specified value. Subsequently, this pa-
rameter is omitted from the vector returned by GetFreePar().

Modelbase::FreePar 381

Modelbase::FreePar

FreePar(const iP)

iP in: int, index of parameter to free, use –1 to free all

No return value.

Description
Frees a parameter which was previously fixed by FixPar().

Modelbase::GetcDfLoss

virtual GetcDfLoss();

Return value
The loss in degrees of freedom in the estimated model. The default is the number
of estimated parameters.

Description
Only override this function if the number to be used in the output is different from
that number of free parameters in the estimation.

Modelbase::GetCovar, Modelbase::GetCovarRobust

GetCovar();

GetCovarRobust();

Return value
Returns the p× p variance-covariance matrix of the free parameters.

Description
See Covar for an explanation of the implementation.

Modelbase::GetcT

virtual GetcT();

Return value
Returns an integer with the actual number of observations to be used in the output.

Description
Only override this function if the number reported in the output is different from
that used in the estimation (m cT).

Modelbase::GetcX, Modelbase::GetcY, Modelbase::GetcYlag

GetcX();

GetcY();

GetcYlag();

Return value
Returns respectively: no of X variables, no of Y variables, lag length of Y.

382 Chapter 12 Class reference

Modelbase::GetForecastData
GetForecastData(const iGroup, const mnLag, const mxLag,

const cTforc);

GetForecastData(const iGroup, const mnLag, const mxLag,

const cTforc, const iT1forc);

iGroup in: int, group number
mnLag in: int, start lag
mxLag in: int, end lag
cTforc in: int, number of forecasts
iT1forc in: int, first forecasts observation (default is m iT2est+1)

Return value
Returns a matrix with the available forecasts data (or an empty matrix if no there is
no data).

Modelbase::GetFreePar, Modelbase::GetFreeParCount, Model-
base::GetFreeParNames
GetFreePar();

GetFreeParCount();

GetFreeParNames();

Return value
GetFreePar returns the p× 1 vector with free parameters.
GetFreeParCount returns the free parameter count p.
GetFreeParNames returns an array of length p with the names of the free parame-
ters.

Description
GetFreePar returns the current values of the free parameters. Parameters are fixed
with FixPar(). The value of free parameters is set with SetFreePar().

Modelbase::GetGroupLabels
virtual GetGroupLabels();

Return value
Returns an array with the text labels for the available status groups used for variable
specification.

Modelbase::GetLogLik
GetLogLik();

Return value
Returns the log-likelihood, which is the value of the m dLogLik member variable.

Modelbase::GetMethod, Modelbase::GetMethodLabel, Model-
base::GetMethodLabels
GetMethod();

Modelbase::GetModelLabel 383

virtual GetMethodLabel();

virtual GetMethodLabels();

Return value
GetMethod returns the integer representing the estimation method, which is the
value of the m iMethod member variable.
GetMethodLabel returns the text label for the current estimation method
m iMethod.
GetMethodLabels returns an array with the text labels for the available estimation.

Modelbase::GetModelLabel, Modelbase::GetModelStatus
virtual GetModelLabel();

GetModelStatus();

Return value
GetModelLabel returns the text label for the current model.
GetModelStatus returns the model estimation status:

value description
MS NONE no model preparatory action has been taken,
MS DATA estimation data has been extracted from the database,
MS PARAMS the starting values for estimation have been set,
MS ESTIMATED the model has been estimated,
MS EST FAILED model estimation has failed.

This value is stored in the m iModelStatus member variable.

Modelbase::GetPackageName
virtual GetPackageName();

Return value
Name of the modelling package.

Description
This virtual function should be overridden by the derived class.

Modelbase::GetPackageVersion
virtual GetPackageVersion();

Return value
Version number of the modelling package.

Description
This virtual function should be overridden by the derived class.

Modelbase::GetPar, Modelbase::GetParCount, Modelbase::Get-
ParNames
GetPar();

GetParCount();

virtual GetParNames();

384 Chapter 12 Class reference

Return value
GetPar returns the q × 1 vector with the current parameter values (both fixed and
free).
GetParCount returns the total parameter count q (both fixed and free parameters).
GetParNames returns an array of length q with the names of the parameters.

Description
GetParNames should be overridden to use proper labels in the output.

Modelbase::GetParStatus
GetParStatus();

Return value
Returns array with:
0 total number of parameters q,
1 q × 1 matrix with 1 in position of free parameters, and 0 for fixed,
2 q × 1 matrix with fixed value in position of fixed parameters (free positions are

unused),
Description

This function is infrequently used.

Modelbase::GetParTypes
virtual GetParTypes();

Return value
Override the default to return an array of strings indicating the type of each model
variable, e.g. "Y","X","X","U". The default returns 0, so that no types are indi-
cated in the output.

Modelbase::GetPrint
GetPrint();

Return value
Returns the current print setting.

Modelbase::GetResiduals
virtual GetResiduals();

Return value
Returns the T × n matrix with residuals (n equals 1 for univariate models).

Description
Must be overridden by the derived class to return residuals.

Modelbase::GetResult
GetResult();

Return value
The estimation result (normally a value from MaxBFGS), which is the value of the
m iResult member variable.

Modelbase::GetResVar 385

Modelbase::GetResVar

virtual GetResVar();

Return value
Returns the n× n matrix with the residual variance (n equals 1 for univariate mod-
els).

Description
Must be overridden by the derived class.

Modelbase::GetStdErr, Modelbase::GetStdErrRobust

GetStdErr();

GetStdErrRobust();

Return value
Returns the q × 1 vector with standard errors (0 at position of fixed parameters).

Description
See Covar for an explanation of the implementation.

Modelbase::GetX, Modelbase::GetY

GetX();

GetY();

Return value
Returns the X and Y matrix.

Modelbase::Grow

Modelbase::Grow(const cTadd);

cTadd in: int, number of observations to grow database sample by (>
0: cTadd observations are added at the end; <0: -cTadd

observations are added at the beginning)
No return value.

Description
Calls Database::Grow and updates the deterministic variables (”Constant”,
”Trend”, ”Seasonal”, ”CSeasonal”).

Modelbase::InitData

virtual InitData();

Return value
TRUE if successful.

Description
Extracts the data for estimation from the underlying database. Sets the model status
to MS DATA if successful.

386 Chapter 12 Class reference

Modelbase::InitPar
virtual InitPar();

Return value
TRUE if successful.

Description
Gets starting values for the estimation procedure. Sets the model status to
MS PARAMS if successful.

Modelbase::IsUnivariate
virtual IsUnivariate();

Return value
TRUE if only one dependent variable (Y VAR) is allowed.

Description
This virtual function should be overridden by the derived class if multivariate mod-
els are implemented.

Modelbase::MapParToFree
MapParToFree(const vPar);

vPar in: int, q vector with parameter values (both fixed and free)
Return value

Returns a p× 1 vector with free parameter values.
Description

Extracts and returns the free parameter values from a full parameter vector.

Modelbase::Modelbase
Modelbase();

No return value.
Description

Constructor function.

Modelbase::Output
virtual Output();

No return value.
Description

Prints the estimation output.

Modelbase::OutputHeader
OutputHeader(const sTitle);

sTitle in: string, title
No return value.
Description

Called by Output to print the header section.

Modelbase::OutputLogLik 387

Modelbase::OutputLogLik
OutputLogLik();

No return value.
Description

Called by Output to print the loglikelihood and other summary statistics.

Modelbase::OutputMax
OutputMax(const sMethod, const iResult, const vPstart,

const bNumerical);

sMethod in: maximization method
iResult in: int, maximization result
vPstart in: vector with starting values
bNumerical in: int, TRUE if using numerical derivatives

No return value.
Description

Called by Estimate to print the starting values and method used for iterative esti-
mation.

Modelbase::OutputPar
OutputPar();

No return value.
Description

Called by Output to print the parameter estimates.

Modelbase::PrintTestVal
static PrintTestVal(const dTest, const cR, const cTdf,

const sLabel);

dTest in: test statistic
cR in: first degrees of freedom
cTdf in: second degrees of freedom
sLabel in: name of test

No return value.
Description

Prints a test statistic and its significance. If cTdf is zero, the test is assumed to have
χ2(cR) distribution, otherwise an F (cR,cTdf) distribution.

Modelbase::ResetFixedPar
ResetFixedPar();

No return value.
Description

Resets the fixed parameters to their prespecified values.

388 Chapter 12 Class reference

Database::Select, Database::SelectByIndex
Database::Select(const iGroup, const aSel);

Database::SelectByIndex(const iGroup, const iVar, const iLag0,

const iLag1);

theGroup in: int or string, group number
aSel in: array of variable names, each optionally followed by

start lag, end lag
iVar in: int: database index of variable to select

matrix: database index of k variables to select
iLag0 in: int: initial lag length of variables to select

matrix: k initial lag lengths of variables to select
iLag1 in: int: final lag length of variables to select

matrix: k final lag lengths of variables to select
No return value.
Description

Selects variables by name and with specified lags, and assigns the iGroup number
to the selection. The aSel argument of Select is an array consisting of sequences
of three values: name, start lag, end lag. For example:

Select("Y", {"CONS", "INC"});// select CONS and INC as group Y
Select("X", {"CONS", 1, 1, "INC", 1, 1, "Constant"});

// the first lag of CONS and INC as group X

Modelbase::SetForecasts
virtual SetForecasts(const cForc, const bIsLessForecasts);

cForc in: int, number of forecasts,
bIsLessForecasts in: int, TRUE: the forecasts are subtracted from the

selection sample.
No return value.
Description

The Modelbase version sets m cTforc.

Modelbase::SetFreePar
SetFreePar(const vParFree);

vParFree in: p vector with free parameter values
No return value.

Modelbase::SetMethod
SetMethod(const theMethod);

theMethod in: int or string, estimation method (no values are predefined in
Modelbase)

No return value.
Description

Sets m iMethod.

Modelbase::SetModelStatus 389

Modelbase::SetModelStatus
SetModelStatus(const iModelStatus);

iModelStatus in: int, model status to set, one of: MS NONE,
MS DATA, MS PARAMS, MS ESTIMATED,
MS EST FAILED

No return value.
Description

Sets m iModelStatus.

Modelbase::SetPar, Modelbase::SetParCount
SetPar(const vPar);

SetParCount(const cPar);

SetParCount(const cPar, const bAdd);
vPar in: q × 1 vector with new parameter values (both

fixed and free)
cPar in: int, total number of parameters (fixed and free)
bAdd in: (optional) int, TRUE: add parameters to current

count; else set the count.
No return value.
Description

SetParCount() must be called for the other parameter functions to work.

Modelbase::SetPrint
SetPrint(fPrint);

fPrint in: int, TRUE to switch printing on, FALSE to switch off.
No return value.
Description

For Monte Carlo experiments, it can be useful to switch off printing.

Modelbase::SetRecursive
virtual SetRecursive(const bSet, const cInit);

bSet in: int, TRUE to switch recursive estimation on
cInit in: int, number of initialization steps

No return value.
Description

The Modelbase version sets m bRecursive and m cTinit.

Modelbase::SetResult
SetResult(const iResult);

No return value.
Description

Sets the estimation result (normally a value from MaxBFGS), which is the value of
the m iResult member variable.

390 Chapter 12 Class reference

Modelbase::SetStartPar
virtual SetStartPar(const vParFree);

vParFree in: p vector with the starting values for the free pa-
rameters

No return value.
Description

This is an alternative to InitPar, allowing for direct setting of the starting param-
eters prior to estimation.

Modelbase::ShowBanner
static ShowBanner(const bSet);

bSet in: int, FALSE: suppress creation banner
No return value.

Modelbase::TestRestrictions
virtual TestRestrictions(vSel);

virtual TestRestrictions(mR, const vR);

vSel in: p vector, with a 1 for the coefficients which
tested to be zero, 0 otherwise

mR in: s× p matrix R
vR in: s vector r

No return value.
Description

The one-argument version tests whether one or more coefficients are zero. The
second form tests restrictions of the type Rθ = r. Both are implemented as a Wald
test with a χ2(s) distribution.
This function requires that Covar() and GetParNames() are implemented, and
SetPar() or SetParFree() are used to set the estimated parameters.

12.3 PcFiml : Modelbase : Database class 391

12.3 PcFiml : Modelbase : Database class

The PcFiml class provides part of the advanced computations available in the menu
driven computer program PcGive, see Doornik and Hendry (2013). The class is derived
from the Database class, and provides model formulation using variable names.

The class allows for estimating a Vector Autoregression (VAR), cointegration anal-
ysis (‘Johansen procedure’), and multivariate regression model (such as an unrestricted
reduced form, URF), as well as a simultaneous equations model (2SLS, 3SLS, FIML).
Identities equations are currently not supported. Mis-specification tests include: vector
autoregression, vector normality, vector heteroscedasticity, vector portmanteau, as well
as a Chow test.

The documentation here is rather cursory, the actual source code (pcfiml.ox) gives
more documentation. The required header file is pcfiml.h, which is imported here
(togther with the actual code) using #import <pcfiml>.
Example

. samples/pcfiml/pcf1.ox
#include <oxstd.oxh>
#import <pcfiml>

main()
{

decl system;

system = new PcFiml();

system.Load("data/data.oxdata");
system.Deterministic(FALSE);

// formulate the system
system.Select("Y", { "CONS", 0, 2, "INC", 0, 2 });
system.Select("X", { "INFLAT", 0, 0 });
system.Select("U", { "Constant", 0, 0 });

system.SetSelSample(1953, 1, 1992, 3);
system.Estimate(); // estimate the system (VAR)
system.Cointegration(); // cointegration analysis

system.Chow(1980, 1); // some tests
system.Portmanteau(12);
system.NormalityTest();
system.ArTest(1, 5);
system.HeteroTest(FALSE, FALSE);
system.HeteroTest(FALSE, TRUE);

delete system;
}
. .

The output of this program is (omitting the χ2 form of some tests):

---- System estimation by OLS ----
The estimation sample is 1953(3) - 1992(3)
CONS lag 0 status Y
CONS lag 1 status Y

392 Chapter 12 Class reference

CONS lag 2 status Y
INC lag 0 status Y
INC lag 1 status Y
INC lag 2 status Y
INFLAT lag 0
Constant lag 0 status U

coefficients
CONS INC

CONS_1 0.90553 0.083906
CONS_2 0.039957 0.17361
INC_1 0.060179 0.73816
INC_2 -0.033528 -0.089942
INFLAT -0.95629 0.0023221
Constant 25.505 87.920

coefficient standard errors
CONS INC

CONS_1 0.13261 0.21549
CONS_2 0.12260 0.19923
INC_1 0.086063 0.13986
INC_2 0.075989 0.12349
INFLAT 0.17341 0.28179
Constant 15.216 24.727

equation standard errors
CONS INC

1.9275 3.1323
residual covariance

CONS INC
CONS 3.7152 4.9906
INC 4.9906 9.8111

log-likelihood=-185.911118 det-omega=10.6792 T=157

Cointegration analysis
eigenvalues trace [pval] max-eval [pval]

0.40306 101.97 0.0000 81.002 0.0000
0.12502 20.967 0.0000 20.967 0.0000

beta
CONS 0.22102 0.17651
INC -0.24747 -0.25253
INFLAT 1.0903 -0.22638

alpha
CONS -0.74698 0.62647
INC 0.24209 1.1558

standardized beta
CONS 1.0000 -0.69898
INC -1.1197 1.0000
INFLAT 4.9332 0.89643

standardized alpha
CONS -0.16510 -0.15820

12.3 PcFiml : Modelbase : Database class 393

INC 0.053507 -0.29187

long run matrix
CONS INC INFLAT

CONS -0.054518 0.026651 -0.95629
INC 0.25752 -0.35178 0.0023221
Unrestricted constant

Chow test for break after 1980(1) in sample up to 1992(3):
Scalar Chow tests: F(50,101)=

1.2555 1.0587
Vector Chow test: F(100,200)=1.18615 [0.1558]
Vector portmanteau: Chi(38)=45.8927 [0.1776]
Vector normality: Chi(4)=3.49129 [0.4792]
Vector AR 1-5 test: F(20,280)=1.74601 [0.0265]
Vector hetero test: F(30,405)=0.977499 [0.5030]
Vector hetero-X test: F(60,382)=1.07614 [0.3357]

The next example involves simultaneous equations estimation.
. samples/pcfiml/pcf3.ox
#include <oxstd.oxh>
#import <pcfiml>
main()
{

decl system = new PcFiml();

system.Load("data/data.in7");
system.Deterministic(FALSE);

// formulate the system
system.Select("Y", { "CONS", 0, 2, "INC", 0, 2 });
system.Select("X", { "INFLAT" });
system.Select("U", { "Constant" });

system.SetSelSample(1953, 1, 1992, 3);
system.SetPrint(FALSE); // don’t print URF results
system.Estimate(); // estimate URF

system.SetPrintUrf(FALSE);
system.SetPrint(TRUE); // but print model output

// formulate a model
system.SetEquation("CONS", {"CONS",1,2, "INC",0,0 });
system.SetEquation("INC", {"INC", 1,2 });

system.Fiml(); // estimate the model by FIML
system.Portmanteau(12); // do some tests
system.EgeArTest(1, 1);
system.EgeArTest(1, 5);
system.NormalityTest();
system.HeteroTest(FALSE, FALSE);
system.HeteroTest(FALSE, TRUE);

delete system; // done with the system
}
. .

394 Chapter 12 Class reference

---- Model estimation by FIML ----
The estimation sample is 1953 (3) 1992 (3)

coefficients
CONS INC

CONS -1.0000 0.00000
INC -0.0024770 -1.0000
CONS_1 1.2238 0.00000
CONS_2 -0.24947 0.00000
INC_1 0.00000 0.99701
INC_2 0.00000 -0.044041
INFLAT 0.00000 0.00000
Constant 24.527 41.792

coefficient standard errors
CONS INC

CONS 0.00000 0.00000
INC 0.035193 0.00000
CONS_1 0.063435 0.00000
CONS_2 0.062315 0.00000
INC_1 0.00000 0.065539
INC_2 0.00000 0.063625
INFLAT 0.00000 0.00000
Constant 16.305 22.300

equation standard errors
CONS INC

2.1822 3.3125
residual covariance

CONS INC
CONS 4.7620 5.5795
INC 5.5795 10.972

log-likelihood=-236.414419 det-omega=20.3209 T=157
FIML estimation: Strong convergence

Vector portmanteau: Chi(43)=77.2487 [0.0010]
Vector EGE-AR 1-1 test: F(4,302)=1.53528 [0.1918]
Vector EGE-AR 1-5 test: F(20,286)=2.23427 [0.0022]
Vector normality: Chi(4)=4.07116 [0.3965]
Vector hetero test: F(30,405)=2.10415 [0.0008]
Vector hetero-X test: F(60,382)=2.67075 [0.0000]

PcFiml function members 395

PcFiml function members

ArTest(const iAr1, const iAr2);

System vector AR test for lags iAr1. . .iAr2.
Chow(const iYear, const iPeriod);

Forecast Chow tests for break on or after iYear (iPeriod).
Cointegration();

Estimate cointegrating space.
CointegrationI2();

I(2) cointegration analysis.
EgeArTest(const iAr1, const iAr2);

Model vector AR test for lags iAr1. . .iAr2.
Estimate();

Estimate the system (NB: use .SetSelSample() first).
Fiml();

Do FIML estimation.
GetOmega();

Returns n× n matrix of URF/RRF residual variance V′V/(T − k).
GetPi();

Returns n× k matrix of URF/RRF coefficients.
GetResiduals();

Returns T × n matrix V of URF/RRF residuals.
GetResult();

Returns results from FIML estimation (return code from MaxBFGS).
GetStatus(const aiConst, const aiTrend);

Returns status of Constant & Trend (0: no constant; 1: restricted constant;
2: unrestricted constant; 4: unrestricted trend; 3: restricted trend)

GetVarNames(const aasY, const aasW);

Returns n n1 k (n1 is no of lagged Y s); puts list of varnames in arguments.
GetVarPi();

Returns n× k matrix with variances of RRF/URF coefficients.
GetVarRf();

System: returns full nk × nk variance-covariance matrix of URF coefficients;
Model: returns full nk × nk variance-covariance matrix of RRF coefficients.

GetVarTheta();

System: returns full nk × nk variance-covariance matrix of URF coefficients;
Model: returns full np× np variance-covariance matrix of model coefficients.

HeteroTest(const fStand, const fCross);

Vector heteroscedasticity test.
NormalityTest();

Vector normality test.

Output(const fSys, const fCoint);

Print System and/or Cointegration results.
PcFiml();

Constructor.

396 Chapter 12 Class reference

Portmanteau(const iLag);

Vector portmanteau test up to lag iLag.
SetEquation(const sEquation, const aModel);

Delete or add variable from model.
SetPrint(fPrint);

Toggles print switch.
SetPrintUrf(fPrintUrf);

Toggles URF print switch.
ThreeSLS();

Do 3SLS estimation.
TwoSLS();

Do 2SLS estimation.

12.4 PcFimlDgp class 397

12.4 PcFimlDgp class
The PcFimlDgp class is a data generation process (DGP), designed for use in dynamic
econometric Monte Carlo experiments. Unlike the PcNaiveDgp class, it derives from
Database to formulate the DGP and store the generated data. This makes the DGP
more general, but somewhat more complex. The class is used through the header file
pcfimldgp.h .

The form of the DGP in mathematical formulation is a reduced form model:

yt = Πwt + ut, t = T1, . . . , T2,
zt = C0zt−1 + vt, t = T1, . . . , T2.

where w contains z, r lags of z and m lags of y:

w′
t =

(
y′
t−1, . . . ,y

′
t−m, z

′
t, . . . , z

′
t−r

)
.

Take yt as an n× 1 vector, zt as q × 1, and wt as k × 1.
The database is constructed as follows:
0 . . . s− 1 initial values for lagged observations, s ≥ max(1,m, r)
T1 = s . . . s+ d− 1 space to allow for discarded observations,
T1 + d . . . T ∗

2 remainder of generated data.

T ∗
2 , the sample size of the database, is determined by the call to Create(). T2, the

endpoint for data generation, is determined by the call to GenerateTo(); T2 ≤ T ∗
2 .

Example
. samples/simula/pcfdgp.ox
#include <oxstd.oxh>
#import <pcfimldgp>

main()
{

decl dgp = new PcFimlDgp(2,1);

dgp.Create(1, 1980, 1, 0, 1, 100);

dgp.Select(PcFimlDgp::Y_VAR, {"Ya", 0, 1});
dgp.Select(PcFimlDgp::Y_VAR, {"Yb", 0, 1});
dgp.Select(PcFimlDgp::Z_VAR, {"Za", 0, 0});
dgp.Select(PcFimlDgp::Z_VAR, {"Constant", 0, 0});

dgp.SetYParameter((<0.9,0;0.1,0.8> ~ <0.2;0.2> ~ <1;0>)’);
dgp.SetZParameter(<0.5>);
dgp.SetDistribution(U_DGP, MVNORMAL, zeros(2,1),

ones(2,2)/10 + unit(2)/5);

dgp.Prepare();
dgp.Print();

print("%c", {"Ya", "Yb", "Ua", "Ub"}, dgp.GenerateTo(6));

delete dgp;
}

398 Chapter 12 Class reference

. .

produces (all non specified parameters are zero by default):
---- PcFiml (2.00) DGP ----
y is (2 x 1), z is (1 x 1) and fixed.

DGP: y[t] = e[t] + Pi w
Ya Y_VAR: dependent variable
Yb Y_VAR: dependent variable
Ya_1 Y_VAR: lagged dependent variable
Yb_1 Y_VAR: lagged dependent variable
Za X_VAR: regressor
Constant X_VAR: regressor
Database sample: 1979 - 2079

Coefficients, Pi’=
Ya Yb

Ya_1 0.90000 0.10000
Yb_1 0.00000 0.80000
Za 0.20000 0.20000
Constant 1.0000 0.00000
e ~ MVN(0,sigma)
sigma=

0.30000 0.10000
0.10000 0.30000

z[t] = v[t] + C0 z[t-1]
C0 =

0.50000
v ~ N(0,1)

Ya Yb Ua Ub
1.1673 0.012740 0.12233 -0.032237
2.3206 0.81527 -0.10044 0.31785
3.2826 0.61491 0.049601 -0.41377
4.2886 1.4344 0.44557 0.72554
4.8417 1.1850 0.17252 -0.20085
4.3026 1.2911 -0.89102 0.022867

PcFimlDgp::Asymp 399

PcFimlDgp::Asymp
Asymp();

No return value.
Description

Prints an asymptotic analysis of the current DGP.

PcFimlDgp::Create
Create(const iFreq, const iYear1, const iPeriod1, const cTdiscard,

const mxDgpLag, const mxT);

iFreq in: int, database frequency
iYear1 in: int, start year of observation T1 + d
iPeriod1 in: int, start period of observation T1 + d
cTdiscard in: int, number of discards, d
mxDgpLag in: int, maximum lag s to be used in DGP
mxT in: int, maximum sample size to be used, = T ∗

2 −
T1 − d+ 1 (this excludes lags and discards)

No return value.
Description

Creates the database. After this, Select may be used to formulate the DGP, with
group identifier Y VAR or Z VAR. The database name of the variables are "Ya", "Yb",
. . . , and "Za", "Zb", The Constant, Trend and normal Seasonals are auto-
matically created.

PcFimlDgp::DiscardZ
DiscardZ();

No return value.
Description

Discards the current zt; the next call to Generate() will generate new observations
on zt.

PcFimlDgp::GenerateTo
GenerateTo(const cT);

cT in: int, sample size T
Return value

GenerateTo returns generated Y : U, as a T × 2n matrix.
Description

Generates cT observation of the current DGP.

400 Chapter 12 Class reference

PcFimlDgp::GenerateU, GenerateV, GenerateY, GenerateZ

virtual GenerateU(const cT);
virtual GenerateV(const cT);
virtual GenerateZ(const cT, const mC0t, const mV);
virtual GenerateY(const cT, const mPit, const mU);

cT in: int, sample size T
mPit in: k × n matrix Π′

mC0t in: q × q matrix C′
0

mV in: T × q matrix V
mU in: T × n matrix U

Return value
GenerateU returns generated U = (uT−1 . . .uT2

)′.
GenerateV returns generated V = (vT−1 . . .uT2

)′.
GenerateY returns generated Y = (yT−1 . . .yT2)

′.
GenerateZ returns generated Z = (zT−1 . . . zT2)

′.

Description
These virtual functions are called by GenerateTo to generate the data using matrix
expressions (the default).

PcFimlDgp::GenerateU t, GenerateV t, GenerateY t, GenerateZ t

virtual GenerateU_t(const iT);
virtual GenerateV_t(const iT);
virtual GenerateZ_t(const iT, const mC0t);
virtual GenerateY_t(const iT, const mPit);

iT in: int, observation t
mPit in: k × n matrix Π′

mC0t in: q × q matrix C′
0

Return value
GenerateU t returns generated u′

t.
GenerateV t returns generated v′

t.
GenerateY t returns generated y′

t.
GenerateZ t returns generated z′t.

Description
These virtual functions are called by GenerateTo to generate the data when using
a for loop. This is the case after a call to UseObsLoop(TRUE).

PcFimlDgp::GetU 401

PcFimlDgp::GetU, GetV, GetY, GetZ

GetU();
GetV();
GetY();
GetZ();

Return value
GetU returns current U = (uT1 . . .uT2)

′, as a T × n matrix.
GetV returns current V = (vT1

. . .uT2
)′, as a T × q matrix.

GetY returns current Y = (yT1
. . .yT2

)′, as a T × n matrix.
GetZ returns current Z = (zT1

. . . zT2
)′, as a T × q matrix.

PcFimlDgp::PcFimlDgp
PcFimlDgp(const cY, const cZ);

cY in: int, n, dimension of yt

cZ in: int, q, dimension of zt
No return value.
Description

Constructor.

PcFimlDgp::Prepare
virtual Prepare();

No return value.
Description

Virtual function which must be called prior to data generation.

PcFimlDgp::Print
Print();

No return value.
Description

Prints the setup of the current DGP.

PcFimlDgp::SetDistribution
SetDistribution(const iEqn, const iDist, mM, mS);

Description
See RanPcNaive::SetDistribution().

PcFimlDgp::SetFixedZ
SetFixedZ(const fSetting);

Description
See RanPcNaive::SetFixedZ().

402 Chapter 12 Class reference

PcFimlDgp::SetInit

SetInit(const iDgp, const mInit);

iEqn in: one of: Y DGP, Z DGP

mInit in: 0, or
Y DGP: s× n matrix
Z DGP: s× q matrix

No return value.
Description

This function is used to specify initial values for the data generation. By default the
initial values are 0.
The first row of mInit will be stored at observation 0 = T1 − d− s in the database.

PcFimlDgp::SetU, SetV, SetY, SetZ

SetU(const m);
SetY(const m);

m in: T × n matrix

SetV(const m);
SetZ(const m);

m in: T × q matrix
No return value.
Description

SetU sets U = uT1
. . .uT1+T−1.

SetV sets V = vT1
. . .vT1+T−1.

SetY sets Y = yT1 . . .yT1+T−1.
SetZ sets Z = zT1 . . . zT1+T−1.

PcFimlDgp::SetYParameter

SetYParameter(const mPit);

mPit in: k × n matrix Π′

No return value.
Description

Sets the parameters for the yt equation.

PcFimlDgp::SetZParameter

SetZParameter(const mC0);

mC0 in: q × q matrix C0

No return value.
Description

Sets the parameters for the zt equation.

PcFimlDgp::UseObsLoop 403

PcFimlDgp::UseObsLoop
UseObsLoop(const bUseObsLoop);

bUseObsLoop in: TRUE: generate data by looping over observa-
tions

No return value.
Description

By default, the data are generated using matrix expressions. Use this to generate the
data in a for-loop. This is considerably slower, but gives more flexibility.

404 Chapter 12 Class reference

12.5 PcNaiveDgp : RanPcNaive class
The PcNaiveDgp class is a data generation process (DGP), designed for use in dy-
namic econometric Monte Carlo experiments. The class is used through the header file
ranpcnaive.oxh.

The class derives from RanPcNaive, see §12.5. Unlike RanPcNaive, the generated
data are stored inside the object, and retrieved using Get functions.

PcNaiveDgp::DiscardZ
PcNaiveDgp::DiscardZ();

No return value.
Description

Discards the current zt; the next call to Generate() will generate new observations
on zt.

PcNaiveDgp::Generate, PcNaiveDgp::GenerateTo
PcNaiveDgp::Generate(const cT);

PcNaiveDgp::GenerateTo(const cT);

cT in: int, sample size T
Return value

Generate returns generated Y = (y0 . . .yT)
′, as a T × n matrix.

GenerateTo returns generated Y : U, as a T × 2n matrix.
Description

Generates cT observation of the current DGP and stores it in the current object.

PcNaiveDgp::GenerateBreakTo
PcNaiveDgp::GenerateBreakTo(const cT,const iTbreak,const iTreset,

const mA0, const mA1, const mA2, const mA3, const mA5);

cT in: int, sample size T
iTbreak in: int, T1, first observation with break
iTreset in: int, T2, first observation after the break
mA0 in: n× n matrix A∗

0 must have zeros on the diagonal
mA1 in: n× n matrix A∗

1

mA2 in: n× q matrix A∗
2

mA3 in: n× 1 matrix a∗3
mA5 in: n× n matrix A∗

5

Return value
Returns generated generated Y : U, as a T × 2n matrix.

Description
Generates cT observation of the current DGP and stores it in the current object. For
observations [0, T1 − 1] and [T2, T − 1] the original DGP is used. For observations
[T1, T2 − 1] the DGP as specified in the arguments is used. Note that only the Y
equation can have a break.

PcNaiveDgp::GetU 405

PcNaiveDgp::GetU, GetY, GetZ

PcNaiveDgp::GetU();
PcNaiveDgp::GetY();
PcNaiveDgp::GetZ();

Return value
GetU returns current U = (u0 . . .uT−1)

′, as a T × n matrix.
GetY returns current Y = (y0 . . .yT−1)

′, as a T × n matrix (as does Generate).
GetZ returns current Z = (z0 . . . zT−1)

′, as a T × q matrix.

PcNaiveDgp::PcNaiveDgp
PcNaiveDgp::PcNaiveDgp(const cY, const cZ);

cY in: int, n, dimension of yt

cZ in: int, q, dimension of zt
No return value.
Description

Constructor.

406 Chapter 12 Class reference

12.6 RanMC class

The RanMC class provides random number generation of specific distribution for use by
the RanPcNaive, PcNaiveDgp and PcFimlDgp classes. All member functions are static,
and can be used without constructing an object, for example as:

x = RanMC::Choleski(x);

RanMC::Choleski
static Choleski(const mSig);

mSig in: square symmetric matrix
Return value

The Choleski decomposition of mSig. mSig may have zeros on the diagonal; the
corresponding rows and columns are ignored in the decomposition, and will be zero
in the return value.

RanMC::CheckDist
static CheckDist(const sFunc, iDist, mPar1, mPar2);

iDist in: int, see RanPcNaive::SetDistribution()
mPar1 in: matrix, see RanPcNaive::SetDistribution()
mPar2 in: matrix, see RanPcNaive::SetDistribution()

Return value
Returns an array of three values:
iDist int, distribution
mPar1 matrix, adjusted input value
mPar2 matrix, adjusted input value

Description
The following adjustments are made:

• column vectors are made into row vectors;
• MVNORMAL CORR: matrix with standard deviations/correlations is translated to

covariance matrix; distribution is set to MVNORMAL;
• MVNORMAL: second argument returned as transposed Choleski factor;
• NORMAL: second argument returned as square root of input value.

RanMC::RanDist
RanDist(const iDist, const cT, const cY, const mDf1, const mDf2);

iDist in: int, distribution, may not be MVNHETERO
cT in: int, desired sample size T
cY in: int, number of variables n
mDf1 in: matrix, first parameter
mDf2 in: matrix, second parameter

Return value
Returns a T × n matrix of random numbers from the specified distribution. The
distribution parameters must be as returned from CheckDist().

RanMC::RanDist1 407

Example
The following program generates the same bivariate normal random numbers twice
(also see page 5):
#include <oxstd.oxh>
#import <ranmc>

main()
{

decl x, par1, par2, idist, mu = <9,3>, sigma = <4,1;1,2>;
[idist, par1, par2] =

RanMC::CheckDist("text", MVNORMAL, mu, sigma);
// use RanMC class, note: calling CheckDist first
ranseed(-1);
x = RanMC::RanDist(MVNORMAL, 5, 2, par1, par2);
// or use as described in How to chapter
ranseed(-1);
x ~= rann(5, 2) * choleski(sigma)’ + mu;
print(x);

}

RanMC::RanDist1
static RanDist1(const iDist, const cY, const mDf1, const mDf2,

const mUlag, const mYlag);

iDist in: int, distribution
cY in: int, number of variables n
mDf1 in: matrix, first parameter
mDf2 in: matrix, second parameter
mUlag in: matrix, last period error term, used for MVNARCH
mYlag in: matrix, last period generated numbers, used for MVNHETERO

Return value
Returns a 1 × n matrix of random numbers from the specified distribution. The
distribution parameters must be as returned from CheckDist().

RanMC::WriteDist
static WriteDist(const sPar, const iDist, const mDf1, const mDf2);

sPar in: string, name of generated variable (e.g. "Y")
No return value.
Description

Writes the used distribution. The distribution parameters must be as returned from
CheckDist().

408 Chapter 12 Class reference

12.7 RanPcNaive class
The RanPcNaive class is a data generation process (DGP), designed for use in dy-
namic econometric Monte Carlo experiments. The class is used through the header
file ranpcnaive.oxh. The design is an n-variate version of the DGP used in Hendry,
Neale, and Ericsson (1991). The form of the DGP in mathematical formulation is:

yt = A0yt +A1yt−1 +A2zt + a3 +A5yt−2 + ut,
ut = B0ut−1 + et +B1et−1,
zt = C0zt−1 + c1 + c2t+ vt.

(12.1)

The vectors yt,ut, et are n × 1, so that the coefficient matrices A0,A1,B0,B1 are
n× n, and a3 is n× 1. The zt vector is q × 1, making a2 n× q, C0 q × q, and c1, c2
q×1. The zs can be kept fixed between experiments, or regenerated for the experiment.
A distribution for et and vt can be specified.

The DGP can also be formulated in equilibrium correction form:

∆yt = αβ′yt−1 +A2zt + a3 +A∗
5∆yt−1 + ut. (12.2)

Example
. samples/simulation/pcndgp.ox
#include <oxstd.oxh>
#import <ranpcnaive>

main()
{

decl dgp = new RanPcNaive(2,1);

dgp.SetYParameter(zeros(2,2), <0.9,0;0.1,0.8>,
<0.2;0.2>, <1;0>);

dgp.SetZParameter(<0.5>, <0>, <0>);
dgp.SetDistribution(U_DGP, MVNORMAL, zeros(2,1),

ones(2,2)/10 + unit(2)/5);

dgp.Print();
decl y, x, u;
[y, x, u] = dgp.GenerateTo(6);
print("%c", {"Ya", "Yb", "Ua", "Ub"}, y ~ u);

delete dgp;
}
. .

produces (all non specified parameters are zero by default):
---- PcNaive (2.00) DGP ----
y is (2 x 1), z is (1 x 1) and fixed.

y[t] = e[t] + A1 y[t-1] + A2 z[t] + a3
A1 =

0.90000 0.00000
0.10000 0.80000

A2 =
0.20000

12.7 RanPcNaive class 409

0.20000
a3 =

1.0000
0.00000

e ~ MVN(0,sigma)
sigma=

0.30000 0.10000
0.10000 0.30000

z[t] = v[t] + C0 z[t-1]
C0 =

0.50000

v ~ N(0,1)

Ya Yb Ua Ub
1.1673 0.012740 0.12233 -0.032237
2.3206 0.81527 -0.10044 0.31785
3.2826 0.61491 0.049601 -0.41377
4.2886 1.4344 0.44557 0.72554
4.8417 1.1850 0.17252 -0.20085
4.3026 1.2911 -0.89102 0.022867

410 Chapter 12 Class reference

RanPcNaive::Asymp
RanPcNaive::Asymp();

No return value.
Description

Prints an asymptotic analysis of the current DGP: companion matrix with eigenval-
ues, together with cointegrating space and level of integration of DGP: I(0), I(1) or
I(2).

RanPcNaive::GenerateTo
RanPcNaive::GenerateTo(const cT);

cT in: int, sample size T
Return value

GenerateTo returns an array of three elements, holding the generated {Y,Z,U}.
If Z is fixed, the fixed value is used, unless none has been set.

Description
Generates cT observation of the current DGP.

RanPcNaive::GenerateBreakTo
RanPcNaive::GenerateBreakTo(const cT,const iTbreak,const iTreset,

const mA0, const mA1, const mA2, const mA3, const mA5);

cT in: int, sample size T
iTbreak in: int, T1, first observation with break
iTreset in: int, T2, first observation after the break
mA0 in: n× n matrix A∗

0 must have zeros on the diagonal
mA1 in: n× n matrix A∗

1

mA2 in: n× q matrix A∗
2

mA3 in: n× 1 matrix a∗3
mA5 in: n× n matrix A∗

5

Return value
Returns an array of three elements, holding generated {Y,Z,U}.

Description
Generates cT observation of the current DGP. For observations [0, T1 − 1] and
[T2, T − 1] the original DGP is used. For observations [T1, T2 − 1] the DGP as
specified in the arguments is used. Note that only the Y equation can have a break.

RanPcNaive::HasFixedZ
RanPcNaive::HasFixedZ();

Return value
TRUE if Z is fixed.

RanPcNaive::GetFixedZValue
RanPcNaive::GetFixedZValue();

RanPcNaive::RanPcNaive 411

Return value
Returns the current fixed Z matrix.

RanPcNaive::RanPcNaive

RanPcNaive::RanPcNaive(const cY, const cZ);

cY in: int, n, dimension of yt

cZ in: int, q, dimension of zt
No return value.

Description
Constructor.

RanPcNaive::Print

RanPcNaive::Print();

No return value.

Description
Prints the setup of the current DGP.

RanPcNaive::SetDistribution

RanPcNaive::SetDistribution(const iEqn, const iDist, mM, mS);

iEqn in: one of: U DGP, Z DGP

iDist in: one of: NO DIST, NORMAL, MVNORMAL, MVNORMAL CORR,
LOGNORMAL, T DIST, F DIST, EXPONENTIAL, MVNARCH,
MVNHETERO

mM in: first parameter of distribution, α
MVNARCH, MVNHETERO: n× n for yt,ut; q × q for zt
others: n× 1 for yt,ut; q × 1 for zt

mS in: second parameter of distribution, β
MVNORMAL, MVNARCH, MVNHETERO: n×n for yt,ut; q×q for
zt
others: n× 1 for yt,ut; q × 1 for zt

No return value.

Description
Specifies the distribution for the u, or z equation in (12.1). The first argument indi-
cates the equation, the second the distribution. The last two arguments parametrize
the distribution.
Write ϵt for either et or vt, then:

412 Chapter 12 Class reference

argument distribution
NO_DIST 0 (no distribution)
NORMAL ϵit ∼ N(αi, βi) = N(0, 1)×

√
βi + αi

MVNORMAL ϵt ∼ Nn(α,β)
MVNORMAL_CORR ϵt ∼ Nn(α,β) specified with standard deviations on

diagonal, correlations on lower diagonal
LOGNORMAL ϵit ∼ Λ(αi, βi) = exp{N(0, 1)} ×

√
αi + βi

T_DIST ϵit ∼ t(αi)
F_DIST ϵit ∼ F(αi, βi)
EXPONENTIAL ϵit ∼ exp(αi)
MVNARCH ϵt ∼ Nn(0,α+ βϵt−1ϵ

′
t−1β

′)
MVNHETERO et ∼ Nn(0,α+ βyt−1y

′
t−iβ

′)

RanPcNaive::SetFixedZ
RanPcNaive::SetFixedZ(const fSetFixed);

fSetFixed in: 0: zt is fixed, 1: zt not fixed
No return value.
Description

Specifies whether zt is fixed or not, and clears the currently stored fixed value.
A new value for fixed zt can be set by SetFixedZValue or generated by
SetNewFixedZValue.

RanPcNaive::SetFixedZValue
RanPcNaive::SetFixedZValue(const mZ);

mZ in: q × T matrix Z

No return value.
Description

Sets a new value for fixed zt in the object.

RanPcNaive::SetInit
RanPcNaive::SetInit(const iDgp, const mInit);

iEqn in: one of: Y DGP, Z DGP

mInit in: 0, or
Y DGP: 1timesn or 2timesn matrix
Z DGP: 1timesq matrix

No return value.
Description

This function is used to specify initial values for the data generation. By default the
initial values are 0.
The Z equation has only one lag, and mInit specifies z−1.
The Y equation can have up to two lags. If mInit has two rows, the first row
specifies y−2, and the second y−1. If mInit has one row, that row is used for both
y−2 and y−1.

RanPcNaive::SetNewFixedZValue 413

RanPcNaive::SetNewFixedZValue
RanPcNaive::SetNewFixedZValue(const cT);

cT in: int, sample size T
No return value.
Description

Generates a new Z value and stores it in the object for subsequent use.

RanPcNaive::SetUParameter
RanPcNaive::SetUParameter(const mB0, const mB1);

mB0 in: n× n matrix B0

mB1 in: n× n matrix B1

No return value.
Description

Sets the parameters for the et equation.

RanPcNaive::SetYParameter
RanPcNaive::SetYParameter(const mA0, const mA1, const mA2,

const mA3);

RanPcNaive::SetYParameter(const mA0, const mA1, const mA2,

const mA3, const mA5);
mA0 in: n× n matrix A0 must have zeros on the diagonal
mA1 in: n× n matrix A1

mA2 in: n× q matrix A2

mA3 in: n× 1 matrix a3
mA5 in: (optional argument) n× n matrix A5

No return value.
Description

Sets the parameters for the yt equation.

RanPcNaive::SetYParameterEcm
RanPcNaive::SetYParameterEcm(const mAlpha, const mBeta, const mA2,

const mA3);

RanPcNaive::SetYParameterEcm(const mAlpha, const mBeta, const mA2,

const mA3, const mA5);
mAlpha in: n× p matrix α
mBeta in: n× p matrix β
mA2 in: n× q matrix A2

mA3 in: n× 1 matrix a3
mA5 in: (optional argument) n× n matrix A∗

5

No return value.
Description

Sets the parameters for the yt equation in equilibrium correction form. The rank of
the cointegration space is p.

414 Chapter 12 Class reference

RanPcNaive::SetZCustom
RanPcNaive::SetZCustom(mCZ);

mCZ in: T × q matrix with custom Z

No return value.
Description

Installs a custom Z. This is added to Z after generation of Z, but before Z is used
in the Y equation.

RanPcNaive::SetZParameter
RanPcNaive::SetZParameter(const mC0, const mC1, const mC2);

mC0 in: q × q matrix C0

mC1 in: q × 1 matrix c1
mC2 in: q × 1 matrix c2

No return value.
Description

Sets the parameters for the zt equation.

RanPcNaive::StoreInDatabase
RanPcNaive::StoreInDatabase(const amYZU, const oDb, const iY0,

const iZ0, const iU0, const cTDiscard)

amYZU in: array[3], holding {Y,Z,U} (e.g. as returned by
GenerateTo)

oDb in: object of Database type
iY0 in: int, −1 or index in Database object of first Y variable
iZ0 in: int, −1 or index in Database object of first Z variable
iU0 in: int, −1 or index in Database object of first U variable
cTDiscard in: int, 0 or number of initial observations to remove from

Y,Z,U

No return value.
Description

Stores generated data in a database object. If the index is −1, the corresponding
variable is not changed in the Database. It is assumed that the Y variables are in a
consecutive block, similar for Z and U.

12.8 Simulator : SimulatorBase class 415

12.8 Simulator : SimulatorBase class
The Simulator class can be used to set up Monte Carlo experiments. Derive
your own simulation experimentation class from this, overriding the virtual functions.
Simulator will handle the replications and storage, and print the final results. The type
of data it can handle are coefficients, test statistics and p-values of test statistics. The
class is used through the header file simulator.oxh.

An extensive example, using the PcFiml class for estimation, is given in the file
samples/simulation/artest.ox. An example more in line with the one here is
samples/simulation/simnor.ox. This program compares the small sample size of
two tests for normality. When run in OxRun, it will plot the distribution of the test
statistics as the Monte Carlo experiment proceeds. A more elaborate example can be
found in the Introduction to Ox.

The example discussed here generates data from a standard normal distribution, and
estimates the mean and variance. It also tests whether the mean is different from zero.
The properties of the estimated coefficients and test statistic are studied by repeating
the experiment M times, and averaging the outcome of the M experiments. So the data
generation process is:

yt = µ+ ϵt with ϵt ∼ N(0, σ2),

together with µ = 0 and σ2 = 1. We estimate the parameters from a sample of size T
by:

µ̂ = T−1
T−1∑
t=0

yt, σ̂2 = (T)−1
T−1∑
t=0

(yt − µ̂)2,

and

ŝ =

{
(T − 1)−1

T−1∑
t=0

(yt − µ̂)2

} 1
2

=

{
T

T − 1
σ̂2

} 1
2

.

The t-test which tests the hypothesis H0: µ̂ = 0 is:

T
1
2
µ̂

ŝ
.

The code for this Monte Carlo experiment is in simtest.ox (remember that the simula
code needs to be imported in):
Example

. samples/simulation/simtest.ox
#include <oxstd.oxh>
#import <simulator>

/*----------------- SimNormal : Simulator -----------------*/
class SimNormal : Simulator // inherit from simulation
{

SimNormal(); // constructor
Generate(const iRep, const cT, const mxT);

};
SimNormal::SimNormal()
{

416 Chapter 12 Class reference

Simulator(<50>, 100, 10000, TRUE, -1,
<0.2,0.1,0.05,0.01>, // p-values to investigate
<0,1>); // true coefs: mean=0, sd=1

SetTestNames({"t-value"});
SetCoefNames({"constant", "std.dev"});
SetTwoSided(<1>);

}
SimNormal::Generate(const iRep, const cT, const mxT)
{

decl my, sdevy, meany, test;

my = rann(cT, 1); // generate data

meany = meanc(my); // mean of y
sdevy = sqrt(cT * varc(my) / (cT-1)); // std.dev of y
test = meany / (sdevy / sqrt(cT));

return
{ 1, // indicates success

meany | sdevy, // mean,sdev of y
tailt(test, cT-1), // t(T-1) distributed
test // t-value on mean

};
}
/*-------------- END SimNormal : Simulator ----------------*/

main()
{

decl experiment = new SimNormal(); // create object
experiment.Simulate(); // do simulations
delete experiment; // remove object

}
. .

produces
T=50, M=10000, RNG=MWC_52: loop seed, common seed=-1

moments of test statistics
mean std.dev skewness ex.kurtosis

t-value -0.0051694 1.0128 0.012870 0.020042

critical values (two sided: left tail quantiles)
10% 5% 2.5% 0.5%

t-value -1.2989 -1.6651 -1.9692 -2.5689

critical values (two sided: right tail quantiles)
10% 5% 2.5% 0.5%

t-value 1.3061 1.6563 2.0005 2.5952

rejection frequencies
20% 10% 5% 1%

t-value 0.20090 0.10080 0.048400 0.0079000
[ASE] 0.0040000 0.0030000 0.0021794 0.00099499

moments of estimates
mean MCSD

Simulator::Generate 417

constant -0.00070079 0.14042
std.dev 0.99472 0.10023

biases of estimates
mean bias MCSE RMSE true value

constant -0.00070079 0.0014042 0.14042 0.00000
std.dev -0.0052756 0.0010023 0.10037 1.0000

The sample size is T = 50, with M = 10000 experiments. Setting the seed en-
ables us to use common random numbers (i.e. the same random numbers in different
experiments). Note that Ox always starts with a fixed seed, so exactly the same results
will be obtained when rerunning the program. The first table gives the empirical critical
values for the test statistic, at the p-values we provided. These should correspond to
the theoretical distribution, namely t(49). The value 1.306 is the 9000th number in the
10000 t-values after sorting the t values (computed using quantiler). The empiri-
cal rejection frequencies give the percentage of experiments which were rejected at the
specified probability points, based on the p-values returned by GetPvalues. The final
table gives the results for the coefficients. If µ̂m is the estimated mean for experiment
m, and µ the true parameter then:

mean ¯̂µ =M−1
∑M−1

m=0 µ̂m,

std.dev σ̂µ̂ =
{
M−1

∑M−1
m=0 (µ̂m − ¯̂µ)2

} 1
2

,

mean bias ¯̂µ− µ,

se mean bias σ̂ ¯̂µ =M− 1
2 σ̂µ̂,

rmse
{
M−1

∑M−1
m=0 (µ̂m − µ)2

} 1
2

=
{
(std.dev)2 + (mean bias)2

} 1
2 ,

where RMSE is the root of the mean squared error. The standard deviation of the sim-
ulated coefficient is also called MCSD (Monte Carlo Standard Deviation). When sim-
ulating coefficients, it is also possible to compute the mean of the estimated coefficient
standard error, this is called the MCSE.

Note that the functions are documented as belonging to the Simulator class, but are
actually mostly in SimulatorBase. The source code of both classes can be found in
ox/src. A further example is given in Chapter 4.

Simulator succeeds the Simulation class which was used up to Ox 6 (this is still
available through simula.oxo and simula.oxh, but now deprecated).

Simulator::Generate
virtual Simulator::Generate(const iRep, const cT, const mxT);

iRep in: int, index of current replication (0 is first)
cT in: int, sample size to be used for replication
mxT in: int, maximum sample size to be used for replication (this is

only relevant when using common random numbers)
Return value

Upon failure, Generate should return an empty matrix or array, or an array which
has integer 0 as the first element.
Upon success, Generate should return an array with four elements:

418 Chapter 12 Class reference

1. integer, value 1
2. coefficients or <>,
3. p-values or <>,
4. test statistics or <>.

If the call to the Generate function fails, additional experiments are run in an
attempt to reach the required number of replications. The number of rejected repli-
cations is reported in the output.

Description
Virtual function which the derived class must override. It is called for every repli-
cation, and must perform the actual replication.
This function should be re-entrant unless Simulate serial is called.

Simulator::Plot
virtual Simulator::Plot(const iRep, const iT)

iRep in: int, index of current replication (0 is first)
iT in: int, sample size of current replication

No return value.
Description

Virtual plot function. The default version does nothing.

Simulator::Prepare
virtual Simulator::Prepare(const cT, const mxT);

cT in: int, sample size to be used for replication
mxT in: int, maximum sample size to be used for replication (this is

only relevant when using common random numbers)
No return value.
Description

Virtual function which the derived class can override if necessary. It is called just
before the replications for sample size cT commence. It can be used to initialize
common regressors (e.g.), and is not run in a parallel section.

Simulator::SaveIn7, Simulator::SaveRecIn7
Simulator::SaveIn7(const sFilename);

Simulator::SaveRecIn7(const sFilename);

sFilename in: destination file name
Return value

Returns TRUE if results were saved.
Description

Saves simulation results to the named file.
SaveIn7 stores the test and coefficient values (use SetStore(TRUE); before run-
ning the experiment).
SaveRecIn7 stores: coefficients, MCSE, Bias, RMSE, test critical values (right
tail), rejection frequencies and moments (use SetRecursive(TRUE); before run-
ning the experiment).

Simulator::SetCoefNames 419

Simulator::SetCoefNames, Simulator::SetTestNames
Simulator::SetCoefNames(const asNames);

Simulator::SetTestNames(const asNames);

asNames in: SetCoefNames: array with sc names
SetTestNames: array with st names

No return value.
Description

Installs the names of tests statistics and coefficients, to determine dimensions of the
collected information, and to make the report more readable.

Simulator::SetPlotRep, SetRecursive, SetStore

Simulator::SetPlotRep(const iPlotRep);

Simulator::SetRecursive(const bRecursive);

Simulator::SetStore(const bStore);

iPlotRep in: call Plot() every iPlotRep replications (de-
fault is 0)

bRecursive in: int, TRUE: do recursive Monte Carlo (default is
FALSE)

bStore in: int, store results of all replications for later ac-
cess (default is FALSE)

No return value.

Simulator::SetTwoSided
Simulator::SetTwoSided(const mIsTwoSided);

mIsTwoSided in: 1×st matrix of 0–1 values, with a 1 for each test
statistics which is two-sided.

No return value.
Description

Should be called before Prepare is called to indicate which tests are two-sided.
Need not be called if all tests are one-sided.
The value of st is derived from the call to SetTestNames.

Simulator::Simulate
Simulator::Simulate()

Simulator::Simulate_parallel()

Simulator::Simulate_serial()

No return value.
Description

Runs the Monte Carlo experiment, and prints the results. Simulate runs the exper-
iment in parallel unless plots are made (and if there are multiple cores and using Ox
Professional).
Simulate parallel runs in parallel, while Simulate serial runs serially.

420 Chapter 12 Class reference

Simulator::Simulator
Simulator::Simulator(const mT, const mxT, const cRep,

const fCommon, const dSeed, const mPvalue, const mTrueParam);

mT in: 1× r matrix of sample sizes
mxT in: int, maximum sample size
cRep in: int, number of replications
fCommon in: 1: reset seed for each experiment; else 0
dSeed in: double, resets seed to dSeed if fCommon ==

TRUE

mPvalue in: 1 × sp matrix with p-values to test at, only used
if GetPvalues returns p-values

mTrueParam in: 1 × sc matrix with true parameters, only used if
GetCoefficients returns coefficients

No return value.
Description

Constructor function. The mT, mPvalue, and mTrueParam arguments are automati-
cally changed to a row vector if they are a column vector on input.
Calls to SetCoefNames (if coefficients are generated) and/or SetTestNames (if
p-values or test statistics are generated) are also required.

Chapter 13

Language reference

13.1 Introduction

The Ox syntax is formalized in a similar way to Kernighan and Ritchie (1988) and
Stroustrup (1997). These two books describe the C and C++ languages on which the
Ox language is loosely modelled (although the object-oriented features in Ox are closer
to those of Java than C++).

As an example, consider the syntax of enum declaration statements:
enum { enumerator-list } ;opt
enumerator-list:

enumerator
enumerator-list , enumerator

enumerator:
identifier
identifier = int-constant-expression

Symbols which have to be typed literally are given in typewriter font; these are
called terminal symbols. Italic symbols are non-terminal, and require further definition.
Ultimately, the whole syntax can be reduced to terminal statements. The subscript opt

denotes an optional element. In this example, identifier and int-constant-expression
remain as yet undefined. An enumerator-list is defined recursively: consisting of one
or more enumerators, separated by columns. This can be visualized as follows:

enumerator-list - enumerator -

��� ��,

6

enumerator
- identifier -�� ��= - int-constant-exp

- identifier
-

421

422 Chapter 13 Language reference

13.2 Lexical conventions

13.2.1 Tokens

The first action of a compiler is to divide the source code into units it can understand,
so-called tokens. There are four kinds of tokens: identifiers, keywords, constants (also
called literals) and operators. White space (newlines, formfeeds, tabs, comments) is
ignored, but can serve to separate tokens.

13.2.2 Comment

Anything between /* and */ is considered comment. This comment can be nested
(unlike C and C++). Everything following // up to the end of the line is also comment,
but is ignored inside /* . . .*/ type comment. So nested comment is possible:

one = cons + 1; // comment
/* two = cons + 1; // comment
*/

This is also legal:

two = cons + 1; /* comment /* nested comment */ */

Note that code can also be removed using preprocessor statements, see §13.9.5.
A special form of comment adds an extra * at the start:

/** Gets the package name.
@returns string with package name
*/
CATS::GetPackageName()
{

return "CATS";
}

This is used by OxDoc (see ox/doc/packages/) to create html files with docu-
mentation.

13.3 Identifiers

Identifiers are made up of letters and digits. The first character must be a letter. Under-
scores () count as a letter. Valid names are CONS, cons, cons 1, a 1 b, etc. Invalid
are #CONS, 1 CONS, log(X), etc. Ox is case sensitive, so CONS and cons are different
identifiers. It is better not to use identifiers with a leading underscore, as several compil-
ers use these for internal names. The maximum length of an identifier is 60 characters;
additional characters are ignored.

13.3.1 Keywords

The following keywords are reserved (throw,try,catch are new in Ox 9):

13.3 Identifiers 423

keyword: one of
array default goto private switch

break delete if protected switch single

case do inline public this

catch double int return throw

char else matrix serial try

class enum namespace short virtual

const extern new static while

continue for operator string

decl foreach parallel struct

13.3.2 Constants

Arithmetic types, string type and array type (see §13.4.1) have corresponding constants.

constant:
scalar-constant:

int-constant
double-constant

vector-constant:
matrix-constant

string-constant
array-constant

13.3.2.1 Integer constants

A sequence of digits is an integer constant. A hexadecimal constant is a sequence of
digits and the letters A to F or a to f, prefixed by 0x or 0X. Examples are:

1236

0x1a (26 decimal)
0xFF (255 decimal)
0xffffffff (–1 decimal using 32 bit integers)

13.3.2.2 Character constants

Character constants are interpreted as an integer constant. A character constant is an
integer constant consisting of a single character enclosed in single quotes (e.g. ’a’ and
’0’) or an escape sequence enclosed in single quotes.

escape-sequence: one of
\" double quote (") \’ single quote (’)
\0 null character \\ backslash (\)
\a alert (bel) \b backspace
\f formfeed \n newline
\r carriage return \t horizontal tab
\v vertical tab \xhh hexadecimal number (hh)

424 Chapter 13 Language reference

So ’\n’ is the integer constant corresponding to the newline character. The newline
character has decimal value 10, and in can also be written as ’\x0A’ or ’\x0a’, but
not ’\X0a’.

13.3.2.3 Double constants

A double constant consists of an integer part, a decimal point, a fraction part, an e, E,
d or D and an optionally signed integer exponent. Either the integer or the fraction part
may be missing (not both); either the decimal point or the full exponent may be missing
(not both). Special values that are recognized are:
.NaN Not a Number,
.Inf infinity, which can be signed,
.last to index the last element.
Here are some examples:

10.0 1.2

.5 -.5e-10

2.1E-112 1D-1 (0.1)
1E1 (10.0) -.Inf (−∞)

A hexadecimal double constant is written as 0x.hhhhhhhhhhhhhhhh. The format
used is an 8 byte IEEE real. The hexadecimal string is written with the most significant
byte first (the sign and exponent are on the left). If any hexadecimal digits are missing,
the string is left padded with 0’s. Some examples:

0x.3ff0000000000000 (1) 0x.3fb999999999999a (−0.1)
0x.7FF0000000000000 (infinity)

The last example shows that most numbers which can be expressed exactly in decimal
notation cannot be represented exactly on the computer.

Double constants in an external declaration (see §13.5.4) may use just a dot to rep-
resent a missing values. This sets the variable to .NaN.

.NaN propagates in expression, eo, e.g. 1+.NaN is also .NaN. They can be detected
e.g. (x == .NaN) or using isnan, ismissing.

13.3.2.4 Null constants

An unitialized variable is has the untyped value .Null. Using an unitialized variable in
an expression results in a run-time error.

When an array is created using new, its elements will have value .Null. In that
case, .Null can be used in an equality comparsion, e.g. (a[1] == .Null) or detected
using ismissing.

13.3.2.5 Matrix constants

A matrix constant lists within < and > the elements of the matrix, row by row. Each row
is delimited by a semicolon, successive elements in a row are separated by a comma.
For example:

13.3 Identifiers 425

< >

< 00, 01, 02; 10, 11, 12 >

< 0.0, 0.1, 0.2 >

< 1100 >
which are respectively an empty matrix, a 2 × 3 matrix, a 1 × 3 matrix and a 1 × 1
matrix: (

00 01 02
10 11 12

) (
0.0 0.1 0.2

) (
1100

)
Elements in a matrix constant can be specified as:
matrix element:

constant-expression
constant-expression : constant-expression
constant-expression : [constant-expression] constant-expression
[constant-expression][constant-expression] = constant-expression
[constant-expression] * constant-expression

The constant expressions must evaluate to an integer or a double. The index of each row
is one higher than the previous row. Within each row, the column index of an element
is one higher than that created with the previous element in the same row.

We have seen examples of the first element type. The second specifies an integer
range, e.g. 2:5 corresponds to 2,3,4,5. The range may decrease, so that 5.3:2.8
corresponds to 5.3,4.3,3.3. It is also possible to specify a step size as in 2:[2]8,
which gives 2,4,6,8. The third form sets a specific element in the matrix (which
overrides the location implicit in the position of the element in the matrix constant).
Note that the top left element is [0][0], the second element in the first row [0][1],
etc. Consider for example: 1 2 3

4 5 6
7 8 9

 indexed as
[0][0] [0][1] [0][2]

[1][0] [1][1] [1][2]

[2][0] [2][1] [2][2]

Finally, it is possible to specify a number of identical elements, e.g. [3]*0 corresponds
to 0,0,0. Unspecified elements are set to zero.

As an example involving all types, consider:
< [4]*1,2; 10,11,14-2; 1:4; [3][4]=99,2;8:[-2-1]2 >

The 2 in the first row will be in column 4, as columns 3 was the last created previously.
The 2 in the penultimate row gets column 5. The last specified row is equivalent to
8:[-3]2. The result is: 

1 1 1 1 2 0
10 11 12 0 0 0
1 2 3 4 0 0
0 0 0 0 99 2
8 5 2 0 0 0


Further examples are given in §13.5.4.

Missing values in a matrix constant could be represented with a dot, or .NaN which
represents NaN (Not a Number), e.g.: < .,2,3; 4,.,6 > Similarly, .Inf repre-
sents infinity.

426 Chapter 13 Language reference

13.3.2.6 String constants

A string constant is a text enclosed in double quotes. Adjacent string constants are
concatenated. A null character is always appended to indicate the end of a string. The
maximum length of a string constant is 2048 characters. Escape sequences can be
used to represent special characters, as in §13.3.2.2. At least one and at most two
hexadecimal digits must be given for the hexadecimal escape sequence. A single quote
need not be escaped. Some examples of string constants:

"a simple string"

"two strings" " joined together"

"with double quote \" and a newline character:\n"

"three ways to include a tab: \t, \x9 and \x09"

"use \\ to include a backslash,e.g. c:\\ox\\include"

13.3.2.7 Raw string constants

A raw string constant is a text enclosed in backticks. They differ from a string constant
(enclosed in double quotes) in several ways:

• There is no special meaning for escape sequences;
• A raw string can extend over multiple lines: that is the only way to insert a newline;
• To embed a backtick, it must be doubled;
• Tab characters are replaced by spaces (using a tab size of 4); all other binary char-

acters are removed;
• Adjacent raw strings are not concatenated.

The maximum length of a raw string constant is 2048 characters. A raw string constant
is useful to embed code of another language:

decl shtml = ‘

<div class="xyz">

Try Ox

</div>

‘;

13.3.2.8 Array constants

An array constant is a list of constants in braces, separated by a comma. This is a re-
cursive definition, because the constant can itself be an array constant. The terminating
level consists of non-array constants. Each level of array constants creates an array of
references. An empty array is written as {}. For example:

{ "tinker", "tailor", "soldier" }

{{ "tinker", "tailor"}, {"soldier"} }
The first creates an array of three references to strings, the second an array of two

references, the first references an array of two references to strings, the second to an
array of one reference to the word soldier:

• −→ "tinker"

• −→ "tailor"

• −→ "soldier"

and:
• −→ • −→ "tinker"

• −→ "tailor"

• −→ • −→ "soldier"

13.4 Objects 427

Remember that { "tinker" "tailor" "soldier" } is identical to an array
consisting of one string: { "tinkertailorsoldier" }.

13.4 Objects

13.4.1 Types

Variables in Ox are implicitly typed, and can change type during their lifetime. The life
of a variable corresponds to the level of its declaration. Its scope is the section of the
program in which it can be seen. Scope and life do not have to coincide.

There are three basic types and several derived types. The integer type int is a signed
integer (4 bytes). The double precision floating point type is called double (8 bytes). A
matrix is a two-dimensional array of doubles which can be manipulated as a whole. A
string-type holds a string, while an array-type is an array of references.

arithmetic-type: int, double, matrix
string-type: string
scalar-type: int, double
vector-type: string, matrix

derived-type: array, function, class object, lambda function
other-type: reference, file, blob

13.4.1.1 Type conversion

When a double is converted to an int, the fractional part is discarded; if the resulting
value cannot be represented, the behaviour is undefined. When an int is converted to a
double, the fractional part is discarded. For example, conversion to int of 1.3 and 1.7
will be 1 on both occasions. Explicit type conversion is discussed in §13.8.2.4.

A single element of a string (a character) is of type int. An int or double can be
assigned to a string element, which first results in conversion to int, and then to a single
byte character.

13.4.2 Lvalue

An lvalue is an object to which an assignment can be made.

13.4.3 Scope

Variables declared at the start of a statement block have scope and life restricted to the
block. These variables are called automatic or local: they are created and initialized
whenever the block is entered, and removed as soon as the block is exited. Variables
declared outside any statement block have global scope and life; these are called static.
Note that Ox assignment of arithmetic types and string type implies copying over the
contents from the right-hand side to the left-hand side. Automatic variables of any type
can be assigned to variables with broader scope.

428 Chapter 13 Language reference

13.5 External declarations

external-declaration:
enum { enumerator-list } ;opt
specifieropt type-qualifieropt decl ext-variable-decl-list ;
specifieropt function-declaration ;

specifieropt function-definition
inlineopt function-definition
inlineopt member-function-definition
class-specifier ;opt

An Ox program consists of a sequence of external declarations. These either reserve
storage for an object, or serve to inform of the existence of objects created elsewhere.
Each program must define one function called main, where execution of the program
will start. The return value from main (if any) is returned to the console window.

13.5.1 Enumerations

enum { enumerator-list } ;opt
enumerator-list:

enumerator
enumerator-list , enumerator

enumerator:
identifier
identifier = int-constant-expression

An enumeration defines a list of integer constants. They provide a convenient way
of centralizing parameters which have a constant value. Members of an enumeration
cannot be assigned to, but can occur in a constant expression. By default, the first
member will have value 0, and each successive member will have a value of one plus
that of the previous member. The value of a member can be set by assigning it a constant
integer value (then, if the next element is not set, it will be one higher than the previously
set value). The names of enumerators cannot coincide with names of other objects in
the same scope (but a previously defined scalar constant may be redefined, as long as it
is set to the same value).

Enumerator names only exist in the file in which they occur. Enumerations should
be placed in header files if they need to be shared between several source files. Enu-
merators can also be declared withn a class.

Here are some examples with corresponding values:

enum { C_FIRST, C_SECOND, C_THIRD }; // 0,1,2
enum { T_INT, T_DBL=2, T_STR, T_MAT=C_THIRD }; // 0,2,3,2
enum { FLAG0,FLAG1, FLAG2=FLAG1*2, FLAG3=FLAG2*2}; //0,1,2,4
enum { T_ERR = 1.0 } ; // error

13.5 External declarations 429

13.5.2 Storage class specifiers

specifier: one of
static

extern

External variable declarations (i.e. declared outside a function) create global vari-
ables: such variables exist while the program runs. The static specifier restricts the
scope of the declared object to the remainder of the file. Although it will exist through-
out the program’s life, it cannot be seen from other files. In classes (§13.5.6), the
static keyword is used with a different meaning.

The extern specifier informs the remainder of the file that the object can be ac-
cessed, although defined (created) in another file. The extern and static specifiers
are mutually exclusive. External declarations are most conveniently placed in header
files. extern is also used to import a function from a dynamic-link library.

13.5.3 Type qualifiers

type-qualifier: one of
const

serial

A const object can only be initialized once, and not changed thereafter. The use
of serial is explained in §13.7.8. The const and serial qualifiers are mutually
exclusive.

13.5.4 External variable declarations

“nobreak
specifieropt type-qualifieropt decl ext-variable-decl-list ;

ext-variable-decl-list:
ext-init-declarator
ext-variable-decl-list , ext-init-declarator

ext-init-declarator:
identifier
identifier = constant-expression
mat-identifier
mat-identifier = int-constant-expression

mat-identifier:
identifier [int-constant-expression][int-constant-expression]

identifier [int-constant-expression]

The static or extern specifier and the const qualifier preceding an external vari-
able declaration list applies to all variables in the list. Each identifier creates space for
an object with global lifetime, unless declared extern or const.

A const object must be initialized (unless declared extern) but its value may not
be changed thereafter. Unless declared extern, a const object cannot be accessed

430 Chapter 13 Language reference

from other files. If of scalar type (see §13.4.1), a const can appear in a constant-
expression.

At the external level of declarations, as treated here, it is possible to specify a matrix
size, and initialize that matrix to zero. If an external variable is created without explicit
value and without dimensions, it will default to an int with value 0. Here are some
examples:

decl a, b; // default to type int, value 0
enum { AAP, NOOT, MIES, WIM };
const decl ia = NOOT, ib = NOOT + WIM; // type: int
const decl ma = < NOOT, AAP; 0, 1 >; // type: matrix
const decl aa = {"tinker", "tailor"}; // type: array
decl id = ia * (WIM - 1) * MIES + ib; // type: int
decl da = ia + 0.; // type: double
decl mb = <0:3; 4:7; 8:11>; // type: matrix
decl ab = { ma, ma}; // type: array
extern decl elsewhere; // defined in other file

decl mc[3][3] = 1.5; // 3 x 3 matrix with values 1.5
static serial decl s_md[2][1]; // 3 x 1 matrix of zeros

enum { ZUS = id }; // error: id is not const
decl ih = id; // error: id is not const
decl ia; // error: already defined

Global variables increase the complexity of a program, and are better avoided. If
needed, declare them as static; usually wrapping it in a class is an alternative.

13.5.5 Functions

13.5.5.1 Function declarations

specifieropt function-declaration ;

extern serialopt string-constant function-declaration ;

function-declaration:
identifier (parameter-type-listopt)

parameter-type-list:
parameter-list , ...identifieropt
...identifieropt

parameter-list:
parameter
parameter-list , parameter

parameter:
constopt declopt identifier
constopt declopt identifier = constant-expression

A function declaration communicates the number of parameters (or formal argu-
ments) and their types to another code unit, so that the function can be called correctly.
The actual creation of the function is done through a function definition (which at the
same time declares the function). A function can be declared many times, but type and
number of parameters must always be identical:

13.5 External declarations 431

test0(); // function takes no parameters
test1(const a1); // one const parameter
test2(const a2, a3=3); // second pareameter has default value
static test3(a1); // cannot be used outside this file
extern test4(a1); // function defined outside this file
print(a1, ...args); // variable number of parameters
test1(a1); // error: previous declaration was different

The second form, using
extern serialopt string-constant function-declaration ;

provides dynamic linking of functions residing in a dynamic-link library (which could
be written in C, FORTRAN, etc.; creation of dynamic link libraries is platform depen-
dent). In the following example, test5 corresponds to the external function MyCFunc(),
located in the dynamic library mydll. When the Ox program is linked, mydll will be
automatically loaded, and the function imported.

extern "mydll,MyCFunc" test5(a1);

The appropriate extension is appended automatically. The following table lists the
defaults that are searched first (thus allowing the folder structure to be shared between

platforms):
mydll.dll Windows 64-bit
mydll mac.so MacOS 64-bit (combined for x86 and ARM architectures)
mydll.so Linux 64-bit

If the DLL is not found, then for backward compatibility, the name with 64 added is
tried.

13.5.5.2 Function definitions

specifieropt function-definition
inlineopt function-definition
function-definition:

identifier (parameter-type-listopt) compound-statement

A function definition specifies the function header and body, and declares the func-
tion so that it can be used in the remainder of the file. A function can be declared many
times, but defined only once.

The use of const is optional but useful: parameters declared const can be refer-
enced, but cannot be changed inside the function. If the parameter is a const reference,
the reference cannot be changed, but what it references can. The decl keyword is op-
tional in front of a parameter. An empty parameter list indicates that the function takes
no parameters at all. The ... indicates a variable number of parameters; it must have
the last position in the header, but cannot be the first.

test1(const a1); // declaration of test1
print(a1, ...); // variable number of parameters
test2(const a1, a2) // definition of test2
{

test1(a2); // call function test1
print(a1, 1, 2, "\n"); // at least one argument
test1(a2, 1); // error: wrong number of arguments
a2 = 1; // a2 may be changed
a1 = 1; // error: a1 is const

432 Chapter 13 Language reference

/* ... */
}

All function arguments are passed by value. This means that a copy of the actual
object is made (although Ox will avoid this internally if the argument is not assigned
to to make function calls more efficient). For int, double, matrix, string and array types
the whole object is copied, and any changes are lost as soon as the function returns.

Objects of a class are accessed through a reference, and that reference is passed by
value. However, what is referenced may be changed, and that change will remain in
effect after function return.

It is possible to take a reference of a variable with & in a function call, see §13.8.4.4,
and the function that is called can then change the content of the referenced variable.
So passing references allows a function to make a permanent change to a variable, for
examples see §13.8.2.2. A reference can only be taken in a function call, and cannot be
assigned to a variable .

Lambda functions are introduced in §13.8.1.2.

13.5.5.3 Returning a value

All functions may have a return value, but this return value need not be used by the
caller. If a function does not return a value, its actual return value is zero.

The return statement returns a value from the function, and also exits the function.
So, when the program flow reaches a return statement, control returns to the caller,
without executing the remainder of the function. The syntax of the return statement is:

return return value ;
Or, to exit from a function which does not have a return value:

return;

The following example illustrates the use of return:

threes(const r, const c) // definition of threes
{

return constant(3, r, c);
}
otherfunc()
{

println(threes(2, 2));
}

Multiple returns can be implemented through the multiple assignment statement,
see §13.8.1.1:

func(const r, const c)
{

return {zeros(r,c), ones(r,c)}; // array with 2 elements
}
otherfunc()
{

decl [x1, x2] = func(3, 3); //element [0] in x1 and [1] in x2
}

13.5 External declarations 433

13.5.5.4 Default values for function arguments

Default values for function arguments can be supplied when they are omitted from the
call, subject to the following constraints:
1. A default value cannot be replaced by another default.
2. The value must be within scope when the call is made, so that it can be substituted

when compiling.
3. When a default value is supplied for a parameter, all subsequent parameters must

have a default value.

Default values for member calls and functions that are called as a string are in-
jected at run-time. This is possible, because the default values become a property of the
function.

The following example illustrates the use of a default value for an argument:

#include <oxstd.oxh>
func(arg=<1,1>); // forward declaration

main()
{

func(); // same as func(<1,1>);
}
func(arg) // definition
{

println("func arg=", arg);
}

13.5.5.5 Variable length parameter list

A named addition to the final ... creates a local variable that receives the remaining
arguments in an array, e.g.:

test(...args)
{

for (decl i = 0; i < sizeof(args); i++)
println("argument ", i + 1, ": ", args[i]);

}
main()
{

test("tinker", "tailor", "soldier");
}

which prints:
argument 1: tinker
argument 2: tailor
argument 3: soldier

The ... must always be the last parameter. The format ...args is convenient
shorthand that avoids using the special library function va arglist():

test(...)
{

decl args = va_arglist();

for (decl i = 0; i < sizeof(args); i++)
println("argument ", i + 1, ": ", args[i]);

434 Chapter 13 Language reference

}

Note that, when used in main, as in main(...args), the call is made to arglist

instead to obtain the command line arguments.

13.5.5.6 Inline function definitions

A function can be defined as inline. This instructs the compiler to expand the function
body wherever it is called, and tends to be used for very small functions. The inline

qualifier is currently ignored.

13.5 External declarations 435

13.5.6 Classes

A class is a collection of data objects combined with functions operating on those ob-
jects. Access to data members from outside the class is through member functions: only
member functions can access data directly (at least, that is the default, see §13.5.6.3 be-
low). So by default, all data members are protected, and all function members public,
using C++ parlance.

class identifier base-classopt { member-list }opt
struct identifier base-classopt { member-list }opt
base-class:

: identifier
member-list:

member
member-list member
public:

member-list member
protected:

member-list member
member:

serialopt staticopt constopt decl ext-variable-decl-list ;
staticopt function-declaration ;

virtualopt function-declaration ;

enum { enumerator-list } ;opt
Consider a simple line class, which supports drawing lines from the current cursor

position to the next, and moving the cursor:

class Line // Line is the class name
{

decl m_x = 0, m_y = 0; // two data members, initialized
const decl m_origin; // const data member
static decl sm_cLines; // static data member
Line(const orig=0); // constructor
moveto(const x, const y); // move cursor
lineto(const x, const y); // draw line and move cursor
static getcLines(); // static function
static setcLines(c); // static function

public:
static const decl M_CONST = 1; // value must be set here
enum { M_AA, M_BB = -1};

}; // ; is optional in Ox (unlike C++)

All member names within a class must be unique. A class declaration introduces
a type, and can be shared between source files through inclusion in header files. Ox
accesses an object through a reference to the object which is created using the new

operator. An object is removed from memory using the delete operator (if there is
no matching delete, the object will exist until the program terminates). Both new and
delete are unary operators.

A member function declaration can specify default values for parameters, subject
to the restriction that, when a default value is supplied for a parameter, all subsequent
arguments must have a default value. Default values are added to the call at run time.

436 Chapter 13 Language reference

Data members that are static const must be initialized in the class declaration.
All other data members can be initialized in the class declaration or in the constructor
function, see §13.5.6.2. Unless they are const, they can also be changed in other
member functions. If member variables are not explicitly initialized, they default to
zero (this is new in Ox 9).

Enumerations of constants can be defined within the class through the enum key-
word (§13.5.4). Constants defined through enum behave the same as static const

decl member variables. In the example above, the public keyword means that
M CONST, M AA and M BB can be accessed from outside the class as Line::M CONST,
etc. This is a convenient way to encapsulate the constants.

13.5.6.1 Member function definitions

inlineopt member-function-definition

member-function-definition:
identifier :: identifier (parameter-type-listopt) compound-statement

A member function provides access to data members of an object. It is defined as
its class name, followed by :: and the function name. The function name must have
been declared in the class. Member functions cannot be declared outside a class; the
class declaration contains the member function declaration. Only a member function
can use data members of its own class directly.

Function member definitions cannot specify default values for parameters: they
must be specified in the declaration instead (which is usually in a header file).

Here are the definitions of the member functions of class Line:

Line::Line(const orig)
{

m_x = m_y = orig; // set cursor at the origin
m_origin = orig; // only allowed in constructor
sm_cLines++; // count number of Line objects

}
Line::moveto(const x, const y)
{

m_x = x; m_y = y;
println("moved to ", x, " ", y);
return this; // return a reference to self

}
Line::lineto(const x, const y)
{

// draw the line from (x,y) to (ax,ay) ...
m_x = x; m_y = y;
println("line to ", x, " ", y);
return this;

}

The new operator creates an object of the specified class, calls the constructor func-
tion, and returns a reference to it. A member function is called through a member
reference, which is a class object name followed by a dot. For example:

decl lineobj;
lineobj = new Line(0); // create object and

13.5 External declarations 437

// set cursor to (0,0)
lineobj.lineto(10, 10); // draw line to (10, 10)
lineobj.Line::lineto(10, 10); // same call
lineobj::lineto(10, 10); // error, needs .

lineobj.moveto(10,10).lineto(20, 30).lineto(30, 30);

delete lineobj; // delete object from memory when done

Since lineobj is of class Line, both calls to lineto are to the same function.
The only difference is one of efficiency. Ox has implicit typing, so can only know the
class of lineobj at run time. In the second case the class is specified, and the function
address can be resolved at compile time.

The last call uses a command chain, which works because both lineto and moveto
return the hidden this object.

Starting from Ox 9, objects are reference counted, and there is no need anymore
to explicitly delete them. The only situation where this does not work is when objects
refer to each other.

Note that objects are always passed by reference, and not copied. The clone function
can be used to make a copy of an object.

13.5.6.2 Constructor and destructor functions

The member function with the same name as the class is called the constructor, and is
automatically invoked when creating an object of the class. The constructor function
may be absent, but may not be static. A constructor always returns a reference to the
object for which it was called and may not specify a return value. Only the constructor
function may set const data members. In the Line class, the origin is only set during
construction, and not thereafter. However, each Line object has its own origin (unless
origin is made static, in which case it is shared between all objects).

The optional destructor function is called after a request to delete an object, and
before the object is actually removed. It may be used to clear up any allocated objects
inside the object to be deleted. A destructor function has the same name as the class,
is prefixed by ~, and may neither take arguments, nor return a value. It does however
receive the this reference.

class Line
{ /* ... */

Line(const orig); // constructor
~Line(); // destructor
/* ... */

};
test()
{

decl lineobj;

lineobj = new Line(0); //create object, call constructor
delete lineobj; // call destructor, delete object

}

438 Chapter 13 Language reference

13.5.6.3 public and protected members, structs

All function members are public and data members are protected by default in a class.
This means that function members can be called from anywhere by accessing an object,
while data members can only be accessed from inside a class or derived class:

class Line
{ /* ... */

decl m_x;
Func();

};
Line::Func()
{

m_x = 0; // can access data member from inside
}
test()
{

decl lineobj = new Line(0);
lineobj.Func(); // can access function member
lineobj.m_x = 1; // error: cannot access data member

}

A struct differs from a class only in that all members are public. So, if in the
above example we would have used struct Line, then the last line (lineobj.m x =

1) would have been allowed.
More fine-grained control is available using the public and protected specifiers:

some variables or enumerations can be made accessible, and others not. The following
code illustrates:

class Line
{ /* ... */
public:

decl m_x;
decl m_y;

protected:
decl m_z;
Func();

};
test()
{

decl lineobj = new Line(0);
lineobj.Func(); // can access function member
lineobj.m_y = 1; // OK: m_y is public
lineobj.m_z = 1; // error: m_z is protected

}

Note, however, that in Ox, the addition of public and protected only applies to
variables. Functions remain public.

13.5.6.4 The this reference and member scope

All non-static member functions receive a hidden argument called this, which points
to the object for which the function is called. So the constructor function Line obtains
in this a reference to the newly created object. The assignment to m x and m y refer
to the members of the this object. When accessing a variable in a member function,

13.5 External declarations 439

it is determined first whether the function is a local variable or an argument. Next it is
considered as a member of this. If all these fail, it is considered as a global variable.
So local variables and arguments hide members, together these hide global variables.
The following example shows how the scope resolution operator :: may be used to
resolve conflicts:

decl x, y; // global variables
extern moveto(x, y); // external function

Line::moveto(const x, const y)
{

::x = x; // assign arguments to global variables
::y = y;
this.m_x = x; // assign arguments to data members
this.m_y = y; // this. needed if these were als x and y

::moveto(x, y); // call non-member function
moveto(x, y); // error: call to itself will

} // cause infinite loop

13.5.6.5 Static members

There is only one copy of a static member, shared by all objects of a class. A static
member may not have the same name as the class it is in. A static member function can
only make direct access to static data members.

Line::getcLines()
{ return sm_cLines;
}
Line::setcLines(c)
{ sm_cLines = c;

m_x = 0; // error: must be static member
lineto(1, 1); // error: must be static member

}

A static member function can be called directly, and indirectly:

Line::setcLines(0); // no Line objects yet
lineobj = new Line(0); // create object
lineobj2 = new Line(3); // create another object
i = Line::getcLines(); // i = 2
i = lineobj.getcLines(); // i = 2
i = lineobj2.getcLines(); // i = 2
Line::moveto(0, 0); // error: function is not static
Line.getcLines(); // error, needs ::

Since there is only one instance of the static function, in all cases the same getcLines
function is called (assuming both lineobj and lineobj2 are an object of class Line).

13.5.6.6 Derived classes

A class may derive from a previously declared class. A derived class will inherit all
members from its base class, and can access these inherited members as its own mem-
bers. However, if the derived class has members with the same name as members of the
base class, the former take precedence. In this way, a class can redefine functionality

440 Chapter 13 Language reference

of its base class. If a function is redefined, the base class name followed by :: may be
used to refer to the base class function.

Deriving from the Line class:

class Angle : Line // Line is the base class
{

Angle(); // constructor
lineto(const x, const y); // draw dash, move cursor

};
Angle::Angle()
{

Line(); // starts at zero
}
Angle::lineto(const x, const y)
{

Line::lineto(x, m_y); // horizontal line
Line::lineto(x, y); // vertical line
print("is angle to ", x, " ", y, "\n");
moveto(x, y);

}

Angle’s constructor just calls the base class constructor, as the body may be read as
this.Line();. Note that the base class constructor and destructor functions are not
called automatically (unlike in C++). In the new lineto object, Line::lineto is
used to make sure that we call the correct function (otherwise it would make a recursive
call). For the moveto that is no problem, moveto calls the base function, as it was not
redefined in the Angle class. Non-static member functions may be declared as virtual
(that is, they can be redefined by a derived class), this is discussed in the next section.

New classes may be derived from a class which is itself derived, but Ox only sup-
ports single inheritance: a class can only derive from one other class at a time.

13.5.6.7 Virtual functions

Virtual functions allow a derived class to supply a new version of the virtual function
in the derived class, replacing the version of the base class. When the base class calls
the virtual function, it will actually use the function of the derived class. For a virtual
function, the call can only be resolved at run time. Then, the object type is known, and
the called function is the one first found in the object, when moving from the highest
class towards the base class.

A virtual function cannot be static.
The effect of using virtual functions is most easily explained by the following ex-

ample.

#include <oxstd.oxh>
class Base
{

basefunc();
virtual vfunc();

};
Base::basefunc()
{

vfunc(); // call the virtual function
}

13.5 External declarations 441

Base::vfunc()
{ print("Base vfunc()\n");
}

class Derived : Base
{

derfunc();
vfunc();

};
Derived::derfunc()
{

this.Base::basefunc();
Base::basefunc();
basefunc(); // three equivalent calls

}
Derived::vfunc()
{ print("Derived vfunc()\n");
}

main()
{

decl obj = new Derived();
obj.basefunc();
obj.derfunc();

}

The output is:
Derived vfunc()
Derived vfunc()
Derived vfunc()
Derived vfunc()

Even though Base has its own vfunc(), the derived class provides a new ver-
sion of this function. This is used whenever Basefunc() is called for an object
of class Derived. Were we to remove the virtual keyword, the output would
be four times Base vfunc(). If we replace vfunc() with Base::vfunc() inside
Base::basefunc, the result would also be four times vfunc() from Base.

442 Chapter 13 Language reference

13.6 Namespace

namespace identifier
{

external-declaration
}

A namespace surrounds a section of external declarations, separating it from func-
tions and variables in other namespaces, or from those outside the namespace. If the
namespace is called ns, then identifiers inside the namespace are first resolved within
that namespace, and then in the unnamed space. From another namespace, access is by
prefix ns::.

Namespaces in Ox cannot be nested, and unnamed namespaces are unsupported.
foo()
{

println("foo");
}
bar()
{

println("bar");
}
namespace test
{
bar()
{

println("test::bar");
}
foo()
{

println("in test::foo");
bar(); // calls test::bar
::bar(); // calls bar

}
} // end of namespace
main()
{

println("calling ::foo");
foo();
println("calling test::foo");
test::foo();

}

which prints:
calling ::foo
in foo
calling test::foo
in test::foo
in test::bar
in bar

13.7 Statements 443

13.7 Statements

statement-list:
statement
statement-list statement

statement:
labelled-statement
expression-statement
compound-statement
serial-compound-statement
selection-statement
switch-statement
iteration-statement
jump-statement
throw-statement
try-catch-block
declaration-statement

expression-statement:
expressionopt ;

compound-statement:
{ statement-listopt }

serial-compound-statement:
serial { closed-statement-list }

throw-statement:
throw expression ;

try-catch-block:
try { statement-list } catch (lvalue){ statement-list }

iteration-statement:
while-iteration-statement
parallel-iterationopt for-iteration-statement

parallel-iteration:
parallel

parallel if(expression)

labelled-statement:
:label statement

The executable part of a program consists of a sequence of statements. Expression
statements are expressions or function calls. It can be a do-nothing expression, as in:

for (i = 0; i < 10; i++)
;

A compound statement groups statements together in a block, e.g.:

for (i = 0; i < 10; i++)
{

444 Chapter 13 Language reference

a = test(b);
b = b + 10;

}

A statement can be prefixed by a label as in:

:L001
for (i = 0; i < 10; i++)

;

Labels are the targets of goto statements (see §13.7.4); labels are local to a function
and have separate name spaces (which means that variables and labels may have the
same name). Note that labels are defined in a non-standard way: the colon is prefixed,
rather than suffixed as in C or C++. It is considered bad programming practice to use
goto.

13.7.1 Selection statements

selection-statement:
if (expression) statement
if (expression) statement else statement
if (declaration-statementopt; expression) statement
if (declaration-statementopt; expression) statement else statement

The conditional expression in an if statement is evaluated, and, if it evaluates to
true, the statement is executed.
The following all evaluate to false:

• 0,
• 0.0,
• .NaN,
• FALSE (predefined constant 0),
• <> (empty matrix),
• {} (empty array),
• "" (empty string),
• a matrix with one or more elements that have value .NaN or 0.0,
• .Null (an unassigned element, e.g. in an array).

The conditional expression may not be a declaration statement. Some examples for
the if statement:

if (i == 0)
i++; // do only if i equals 0

if (i >= 0)
i = 1; // do only if i >= 0

else
i = 0; // set negative i to 0

if (i == 0)
if (k > 0)

j = 1; // do only if i != 0 and k > 0
else // this else matches the inner if

j = -1; // do only if i != 0 and k <= 0

13.7 Statements 445

if (i == 0)
{ if (k > 0)

j = 1; // do only if i != 0 and k > 0
}
else // this else matches the outer if

j = -1; // do only if i != 0

Each else part matches the closest previous if, but this can be changed by using
braces. When coding nested ifs, it is advisable to use braces to make the program more
readable and avoid potential mistakes.

Further examples involving matrices are given in §13.8.9.
Ox 9 allows the conditional expression to be preceded by a declaration
if (decl i = unit(2); i == 0) // prints false

println("true!");
else

println("false!");
// is shorthand for:
{

decl i = unit(2); // i is local to the if
if (i == 0)

println("true!");
else

println("false!");
}

13.7.2 Switch statements

switch-statement:
switch (expression) { case-list defaultopt }
switch single (expression) { case-list defaultopt }

case-list:
case
case-list case

case:
case expression : statement-list

default:
default : statement-list

A switch statement is a compact way of writing a sequence of if statements in-
volving the same variable for comparison:

decl i = 1;
switch (i)
{

case 0:
println("zero");
break;

case 1:
println("one");
break;

default:
println("not zero, not one");

446 Chapter 13 Language reference

break;
}

which prints: ”one”. There is a sequence of case blocks, and an optional default
block, which must be the last. The break statement jumps out of the switch statement.

Here, the value of i is compared to each value in turn, until a comparison is true.
Then all the statements for that case and all subsequent cases are executed (including
the default) until a break is encountered. If no case is true, the default statements are
executed. So, once inside a case, we automatically fall through to the next case. The
advantage is that several cases can be grouped together:

switch (i)
{

case 0:
println("zero");
break;

case 1:
case 2:

println("one,two");
break;

default:
println("default");
break;

}

printing one,two when i is 1 or 2.
The drawback is that is easy to forget the break statements, and get unexpected

results. The following code
switch (i)
{

case 0:
println("zero");

case 1:
case 2:

println("one or two");
default:

println("default");
}

will print when i equals zero:
zero
one or two
default

To emphasize that distinction, and allow for more readable code, Ox also has the
switch single statement. Then, one and only one case (or default) is executed:

switch_single (i)
{

case 0:
println("zero");

case 1:
println("one");

case 2:
println("two");

case "two":
println("two as a string");

13.7 Statements 447

default:
println("default");

}

In practice switch single is used more often than switch. From Ox 9, different
types can be used in the case statements. This works because string == int is false.

13.7.3 Iteration statements

while-iteration-statement:
while (expression) statement
do statement while (expression) ;

for-iteration-statement:
for (expressionopt; expressionopt; expressionopt) statement
for (declaration-statementopt; expressionopt; expressionopt) statement
foreach (identifier in identifier foreach-index-expressionopt) statement
foreach (decl identifier in identifier foreach-index-expressionopt) statement

foreach-index-expression:
[identifier]
[identifier][identifier]
[identifier][]
[][identifier]

The while statement excutes the substatement as long as the test expression is
nonzero (for a matrix: all elements are nonzero). The test is performed before the
substatement is executed.

The do statement excutes the substatement, then repeats this as long as the test
expression is nonzero (for a matrix: all elements are nonzero). The test is performed
after the substatement is executed. So for the do statement the substatement is executed
one or more times, whereas for the while statement this is zero or more times.

The while and do statements can be envisaged respectively as:

:startwhile :startdo

if (expression) statement
{ if (expression)

statement goto startdo;

goto startwhile;

}

The for expression:

for (init expr; test expr ; increment expr) statement

corresponds to:

448 Chapter 13 Language reference

{
init expr;
while (test expr)
{

statement
increment expr;

}
}

Note that, when the init expr is a declaration statement, the declaration is local to the
for statement.

The foreach expression is used to loop over all elements in a matrix, array or
string. The most simple form:

foreach (element-identifier in collection-identifier) statement
implements a loop over all elements in the collection. For an array or string, this is
equivalent to:

for (decl i = 0; i < sizeof(collection-identifier); ++i)

{
element-identifier = collection-identifier[i];
statement // no access to i

}
While for a matrix:

for (decl i = 0; i < sizer(collection-identifier); ++i)

{
for (decl j = 0; j < sizec(collection-identifier); ++j)

{
element-identifier = collection-identifier[i][j];
statement // no access to i,j

}
}

The following restrictions apply to the foreach loop:
1. The collection-identifier must be an lvalue; it can be an object member, but may not

contain an index, because that would be interpreted as the foreach-index-expression.
2. The element-identifier and the identifiers in the foreach-index-expression must be

local variables
3. The dimension of the collection-identifier must be fixed during the loop, but its

contents may change.
4. Assigning to the element-identifier does not change the collection-identifier.
5. When the loop terminates, the element-identifier is undefined.

The foreach-index-expression part determines how the loop is performed:
foreach (el in a) — loop over all elements (matrix, array, string), no access to

iterators;
foreach (el in a[i][j]) — loop over all elements of a matrix with access to it-

erators i and j;
foreach (el in a[i][]) — loop over all rows i, with access to i;
foreach (el in a[][j]) — loop over all columns j, with access to j;

13.7 Statements 449

foreach (el in a[i]) — loop over all elements i (row/column vector, string or
array).

Some examples:
decl x, m = rann(2,2);
// Example 1: print all elements
foreach (x in m)

println(x);
foreach (decl x in m[i][j]) // x,i,j local to loop

println("element ", i, ",", j, ": ", x);

// Example 2: create a Toeplitz matrix
decl c = zeros(10, 10);
foreach (x in c[i][j])

c[i][j] = fabs(i - j) + 1;

// Example 3: print all strings in an array:
decl a = {"aaa", m, "BBB"}, s;
foreach (s in a)

if (isstring(s))
println(s);

13.7.4 Jump statements

jump-statement:
break ;

continue ;

goto label;
return expressionopt;

The return statement exits the function; if it is followed by an expression, the
value of the expression is returned to the caller, see §13.5.5.3.

A continue statement may only appear within an iteration statement and causes
control to pass to the loop-continuation portion of the smallest enclosing iteration state-
ment.

The use of goto should be kept to a minimum, but could be useful to jump out of a
nested loop, jump to the end of a routine or when converting Fortran code. It is always
possible to rewrite the code such that no gotos are required.

A break statement may only appear within an iteration statement and terminates
the smallest enclosing iteration statement.

Two examples:
for (i = 0; i < 10; i++)
{

if (test1(i))
continue;

test2(); // only done if test1(i) returns 0
}
for (i = 0; i < 10; i++)
{

if (test1(i) == 0)
break; // jump out of loop if test1(i) returns 0

test2();

450 Chapter 13 Language reference

}

13.7 Statements 451

13.7.5 Declaration statements

declaration-statement:
decl declaration-list ;
serial decl declaration-list ;

declaration-list:
decl-statement
declaration-list , decl-statement

decl-statement:
identifier
identifier = expression
[identifier-list] = expression
identifier[expression]
identifier[expression][expression]
identifier[expression] = expression
identifier[expression][expression] = expression

Declarations at the external level were discussed in §13.5. Here we treat declaration
within a block. The use of serial is explained in §13.7.8.

Declaration statements create a ‘local’ variable for further manipulation as long as
it stays within scope. The created object is removed as soon as the block in which it
was created is exited. Variables or initialized to .Null unless dimensions are set or an
asisgnment is made in the declaration statement. Multiple variables can be created and
assigned to using multiple assignment.

Variables in Ox are implicitly typed, and their type can change during program
execution. Locally declared variables must be initialized before they can be used in
an expression. Trying to use the value of a variable that has been declared but not yet
assigned to results in a run-time error.

It is possible to specify matrix dimension as can be done at the external level,
so decl ma[3][3] = 1.5 is equivalent to decl ma = constant(1.5,3,3) (this
is new in Ox 9). Just writing decl ma[3][3] creates a matrix of zeros, and equivalent
to decl ma = zeros(3,3).

Declaration statements do not have to occur at the start of a block. Consider for
example:

test1(arg0)
{

decl k, a = arg0;
decl [x1, x2] = {1, 2};
decl ident = <1, 0; 0, 1>;
decl identsq = ident * ident;

print("test\n");

decl i, j;
for (i = 0; i < 10; i++)
{

test2(i);
test3(j); // run-time error: j has no value

452 Chapter 13 Language reference

}

Variables declared in an inner block hide variables in the outer block:

decl i = 3; // external declaration

test2(a)
{

print(i, "\n"); // 3

{ decl i = 0;
print(i, "\n"); // 0
if (i == 0) // is true
{

decl i = 1;
print(i, "\n"); // 1
print(::i, "\n"); // 3

}
decl a; // error: conflict with argument

}
}

13.7.6 try-catch block and throw

A try-catch-block can be used to catch errors that are generated by the run-time system,
or thrown elsewhere in the code. If an error occurs while executing the try block,
program flow jumps to the catch block. The variable used as argument to catch is
declared locally to the catch block, and contains an error value (often a string with the
error message). The catch block can take corrective action, ignore the error, or throw
an error again.

The throw statement can be used to throw an expression representing the error (as
well as calling oxrunerror). The error expression can be of any type; run-time errors
are always strings with the error message.

The following code
#include <oxstd.oxh>
test(a)
{

if (a == 1)
throw "throwing error";

if (a == 2)
oxrunerror("run-time error");

unit(2) * unit(3); // this always fails
}
main()
{

try
{

test(1);
println("no error");

}
catch(e)
{

println("Caught error: ", e);

13.7 Statements 453

}
// println(e); // error: e only exists in the catch

try
{

test(0);
println("no error");

}
catch(e)
{

println("Caught error: ", e);
//throw e; // throw again: Ox aborts

}
println("normal continuation: ", meanc(rann(100,2)));

}

prints:

Caught error: throwing error
Caught error: Runtime error in test (10):

’matrix[2][2] * matrix[3][3]’ bad operand
normal continuation:

-0.020860 -0.020586

13.7.7 Closed statement list

A statement list is closed if the only possible entry is at the top of the block, and the only
exit at the bottom. So a closed block may not contain return or break to terminate
a loop (thus leaving the block; but continue is allowed because it jumps to the next
iteration, so stays within the loop). Neither may there be a jump statement into or out
of the block.

13.7.8 Parallel programming

This section gives a summary of the use of parallel and serial. Examples are given
in Chapter 4.

13.7.8.1 Canonical for and foreach loops

A for loop is canonical if:
1. the iterator is a local variable,
2. the iterator is an integer,
3. the iterator is not changed in the loop body,
4. the iterator is incremented (or decremented) by an integer constant,
5. the upperbound can be computed before the loop starts,

In particular, it is either the value of a variable, or sizer, sizec, sizerc, sizeof,
rows, columns of a variable.

6. the upperbound is fixed while the loop executes,
7. the loop body is a closed statement list.

Except for the last condition, all are automatically satisfied by a foreach loop.

454 Chapter 13 Language reference

Ox can determine whether a for or foreach loop is canonical, and use compiled
code for the iteration aspect, which is more efficient. If you use the -v command line
switch, a message will indicate if a loop was optimized this way.

13.7.8.2 Parallel for and foreach loops

A loop statement can be prefixed with parallel to schedule it for parallel execution.
However, only a canonical for or foreach loop can be run in parallel (Ox Professional
only). Moreover, a programmatic requirement is that there is no dependency between
iterations, i.e. if the ordering of the iterations does not matter. This condition is not
verified by Ox, but the responsibility of the programmer.

When Ox starts running code in parallel, n threads are created. Each thread gets its
own space for local variables. Initially these are the same as the main thread (integers
and doubles are copied, the remainder are references to the value in the main thread). As
the threads proceed in parallel, the local variables may be different in each thread. When
the parallel section is finished, only the local variables in the main thread survive, the
others are removed. This is useful because it separates local variables, but is a problem
for reduction operations such as accumulating a sum.

There is just one version of global variables. These are safe for reading, but writing
(or writing and reading) in parallel is unsafe, resulting in a race condition. Or even a
crash when memory allocation and deallocation overlaps.

Ox variables can be declared as serial, in which case only one thread at a time
is able to modify the variable through the following compound assignment operations:
= /= += -= ~= |= .= ./= ++ --. Note that simple assignment (=)
is unaffected by the serial declaration.

decl i, j, crep = 10;

decl sum1 = 0;
parallel for (i = 0; i < crep; ++i)
{

sum1 += 1;
}
println("sum1=", sum1);

serial decl sum2 = 0;
parallel for (i = 0; i < crep; ++i)
{

sum2 += 1;
}
println("sum2=", sum2);

prints

sum1=3
sum2=10

The precise value of sum1 depends on the number of threads, i.e. what part is executed
in the main thread. However, it clearly has not the intended result.

The value of sum2 is correct though: only one thread at a time was allowed to
update, so, while one was doing this, the others had to wait. the price we pay for this is
slower code.

13.7 Statements 455

Note that updating matrix elements is safe, provided the matrix is pre-allocated, and
each iteration updates a different element.

Also note that functions written in Ox code cannot be labelled as serial, but calls to
dynamic-link libraries can.

Sections of code may need to be executed together in serial mode. This can be
achieved by creating a serial block. For example, to keep the print statements to-
gether:

parallel for (i = 0; i < crep; ++i)
{

// lengthy computation running in parallel
//
serial
{

print("i=");
println(i);

}
}

Parallel computations are not-nested: if a parallel loop contains another parallel
loop, the latter is executed serially. If a parallel loop is nested in a serial section, it will
not be executed in parallel. Specifying the -rp1 Ox command line switch also forces
the program to run serially.

It is possible to make parallel execution conditional in your code (new in Ox 9):
decl do_in_parallel = TRUE;
parallel if(do_in_parallel) for (i = 0; i < crep; ++i)
{
}

456 Chapter 13 Language reference

13.8 Expressions

Table 13.1 Ox operator precedence

Category operators associativity
primary () :: [] {} left to right
postfix -> . () [] ++ -- ’ left to right
power ^ .^ left to right
unary ++ -- + - ! new delete right to left
multiplicative ** * .* / ./ left to right
additive + - left to right
horizontal concatenation ~ left to right
vertical concatenation | left to right
relational < > <= >= .< .> .<= .>= left to right
equality == != .== .!= left to right
logical dot-and .&& left to right
logical-and && left to right
logical dot-or .|| left to right
logical-or || left to right
conditional ? : .? .: right to left
assignment = *= /= += -= ~= |= .*= ./= right to left
comma , left to right

Table 13.1 gives a summary if the operators available in Ox, together with their
precedence (in order of decreasing precedence) and associativity. Operators on the
same line have the same precedence, in which case the associativity gives the order of
the operators. Parentheses can change the order of evaluation:

i = 1 + 2 * 3; // 7
i = (1 + 2) * 3; // 9

Subsections below give a more comprehensive discussion. Several operators require
an lvalue, which is a region of memory to which an assignment can be made. Note that
an object which was declared const is not an lvalue. Many operators require operands
of arithmetic type, that is int, double or matrix.

The elemental operators are dot-operators (operating element-by-element) and re-
lational operators (element by element, but returning a single boolean value). The re-
sulting value is given Tables 13.2 and 13.3 respectively. In addition, there are the matrix
operations, especially matrix multiplication and division; the result from these operators
is explained below. Note that a scalar is defined as: int, double or 1× 1 matrix.

13.8 Expressions 457

Table 13.2 Result from dot-style binary operators + - .* ./ .^ .&& .|| .< .>

.<= .>= .== .!=

left a operator right b result computes
int .op int int a op b
int/double .op double double a op b
double .op int/double double a op b
scalar .op matrix m× n matrix m× n a op bij
matrix m× n .op scalar matrix m× n aij op b
matrix m× n .op matrix m× n matrix m× n aij op bij
matrix m× n .op matrix m× 1 matrix m× n aij op bi0
matrix m× n .op matrix 1× n matrix m× n aij op b0j
matrix m× 1 .op matrix m× n matrix m× n ai0 op bij
matrix 1× n .op matrix m× n matrix m× n a0j op bij
matrix m× 1 .op matrix 1× n matrix m× n ai0 op b0j
matrix 1× n .op matrix m× 1 matrix m× n a0j op bi0

Table 13.3 Result from relational operators < > <= >= == !=

left a operator right b result computes
int op int int 0, 1 a op b
int/double op double int 0, 1 a op b
double op int/double int 0, 1 a op b
scalar op matrix m× n int 0, 1 a op bij
matrix m× n op scalar int 0, 1 aij op b
matrix m× n op matrix m× n int 0, 1 aij op bij
string m op string n int 0, 1 a op b
array m == array n int 0, 1 1 if m == n and ai == bi
array m != array n int 0, 1 !(a == b)
object == object int 0, 1 1 if referring to same object
object != object int 0, 1 1 if not referring to same object

458 Chapter 13 Language reference

Table 13.4 Result from relational operators involving an empty matrix as argument

operator a op <> <> op b <> op <>

== 0 0 1
!= 1 1 0
>= 0 0 1
> 0 0 0
<= 0 0 1
< 0 0 0
other <> <> <>

Table 13.5 Result from relational operators involving .NaN values

a op b one of a, b .NaN both a, b .NaN
== 0 1
!= 1 0
>= 0 1
> 0 0
<= 0 1
< 0 0

13.8.1 Primary expressions

primary-expression:
(expression)

[assignment-expression-list]
{ array-expression-list }
constant
identifier
:: identifier
class-name :: identifier
this

[=] (argument-type-listopt) compound-statement

assignment-expression-list:
lvalue
assignment-expression-list , lvalue

array-expression-list:
assignment-expression
named-expression
array-expression-list , assignment-expression
array-expression-list , named-expression

named-expression:
string-expression : expression

13.8 Expressions 459

An expression in parenthesis is a primary expression. Its main use is to change the
order of evaluation, or clarify the expression.

An expression in curly braces creates an array of the comma-separated expressions.
See §13.8.2.5 for indexing in general and §13.8.2.6 for indexing with a string.

All types of constants discussed in §13.3.2 form a primary expression.
The operator :: followed by an identifier references a variable declared externally

(see §13.5). Section 13.5.6.4 gives examples. A class name followed by :: and a
function member of that class references a static function member, or any function
member if preceded by an object reference, see sections 13.5.6.5 and 13.5.6.1.

The this reference is only available inside non-static class member functions, and
points to the object for which the function was called.

13.8.1.1 Multiple assignment and multiple returns

A comma-separated list of lvalues in square brackets can be used for multiple assign-
ments. When the right-hand side is an array, each array value in turn is assigned to the
next value of the left-hand side. The return value of a multiple assignment expression
is zero (the examples below illustrate).

When there is one lvalue in the square brackets, the right-hand side need not be an
array. Fewer array elements on the right than lvalues on the left leads to a runtime error.
The converse is no problem. Elements in the comma-separated list can be omitted, in
which case the corresponding element on the right is skipped.
The following examples illustrate multiple assignments:

decl as;
as = {"a", <10,11>, "b"};
decl [x1, x2, x3] = as;
println("x1=", x1, " x2=", x2, "x3=", x3);

[x1] = 10;
[x2, x3] = {11,12,13};

//[x2, x3, x4] = {11,12}; // error: index out of range

println("x1=", x1, " x2=", x2, " x3=", x3);

[x1,,x3] = {21,22,23};
println("x1=", x1, " x3=", x3);

x3 = 10 + ([x1, x2] = as[<0,2>]);
println("x1=", x1, " x2=", x2, " x3=", x3);

x1=<1,2,3,4>;
[x1[0], x1[3]] = {-1, -3};
println("x1=", x1);

Which prints:

x1=a x2=
10.000 11.000

x3=b
x1=10 x2=11 x3=12
x1=21 x3=23
x1=a x2=b x3=10

460 Chapter 13 Language reference

x1=
-1.0000 2.0000 3.0000 -3.0000

A multiple assignment expression can be used to implement multiple returns from
a function:

func(const r, const c)
{

return {zeros(r,c), ones(r,c)}; // array with 2 elements
}
main()
{

decl [x1, x2] = func(2, 2);//get element [0] in x1 and [1] in x2

println("x1=", x1, "x2=", x2, "as array: ", func(1, 1),
"spread: ", ...func(1, 1));

}

Which prints:
x1=

0.00000 0.00000
0.00000 0.00000

x2=
1.0000 1.0000
1.0000 1.0000

as array:
[0] =

0.00000
[1] =

1.0000
spread:

0.00000

1.0000

13.8.1.2 Lambda function

A lambda function can be useful to create a local function with a different signature, or
to provide access to local variables when the signature is proscribed (as e.g. the function
for maximization).1

A lambda function can have arguments and local variables. It is somewhat different
from a normal function: it has no function name (it is also called an anonymous func-
tion) but can be stored in a variable. Moreover, it has read-only access to all the local
variables that are in the scope of its definition:

decl a, b;
decl fnlam = [=](arg) { println("a=", a, " arg=", arg); return b; };

There are some restrictions:
• Variable and default arguments are not allowed.
• [=] captures local variables and arguments of the lambda context by value: they

cannot be modified. This implies that a lambda function can be safely used in a
parallel setting.

1This can also be achieved through a class, because a function member can access the mem-
bers of the object to which it belongs, even when passed as an argument.

13.8 Expressions 461

• Lambda functions cannot be called recursively or when its encapsulating function
has returned.
Internally, the local variables are captured by reference. So a lambda function that
accesses local variables can only be used when these are in existence. As a conse-
quence, care is required returning a lambda function: when the function surrounding
the lambda returns, the local variables disappear, and the lambda is invalid. In other
words: the closure is incomplete, because it is by reference. This implementation
is less flexible than, say, JavaScript but is efficient, because large matrices are not
unneccesarily copied.

A lambda function can be created in place, from samples/maximize/probit1a:

ir = MaxBFGS(
[=](const vP, const adFunc, const avScore, const amHessian)
{

return fProbit(vP, adFunc, mx, my);
}, &vp, &dfunc, 0, TRUE);

But as a variable may be easier to read, see samples/maximize/probit1b:

decl fprobit_max = [=](const vP, const adFunc, const avScore,
const amHessian)

{
return fProbit(vP, adFunc, mx, my);

};
ir = MaxBFGS(fprobit_max, &vp, &dfunc, 0, TRUE, maxctrl);

13.8.2 Postfix expressions

postfix-expression:
primary-expression
postfix-expression ->

postfix-expression .

postfix-expression (expression-listopt)
postfix-expression [index-expressionopt]
postfix-expression ++

postfix-expression --

postfix-expression ’

expression-list:
assignment-expression
expression-list , assignment-expression

13.8.2.1 Member reference

The . operator selects a member from an object reference (-> may also be used). The
left-hand expression must evaluate to a reference to an object, the right-hand expression
must result in a member of that object. See section 13.5.6.

462 Chapter 13 Language reference

13.8.2.2 Function calls

A function call is a postfix expression consisting of the function name, followed in
parenthesis by a possibly empty, comma-separated list of assignment expressions.
These provide the arguments for the parameters of the function.

All argument passing is by value: they cannot be changed by the function that
is called. The exception is an object or reference to a variable is passed: then the
contents may be changed by the function. All arguments are evaluated from left to right
before the function is entered. Recursive function calls are allowed. A function must be
declared before it can be called, and the number of arguments in the call must coincide
with the number in the declaration, unless
1. the declaration has ... as the last argument, see §13.5.5.1;
2. the spread operator is used, see §13.8.2.3;
3. the function has default values for missing arguments, see §13.5.5.4.

Some examples:

func1(a0, a1, a2, a3)
{ print("func1(", a0, ",", a1, ",", a2, ",", a3, ")\n");
}
func2()
{ return 0;
}
func3(a0)
{ a0[0] = 1;
}
test1()
{ decl a, b;

a = 1;
func1(a, b = 10, func2(), a != 0); // func1(1,10,0,1)
a = func2(); // a = 0
func3(&a); // a = 1
func3(a); // error

}

In the latter example a will have been changed by func3. Function arguments are
passed by giving the name of the function:

func4(a0, a1)
{ a1(a0); // make function call
}
func5(a0)
{ print("func5(", a0, ")\n");
}
test2()
{ decl a = func5;

func4(1, func5); // prints "func5(1)"
func4(1, a); // prints "func5(1)"
func4(1, func5(a)); // error: requires function
func4(1, func2); // error: func2 takes incorrect

} // number of arguments

Note that the parentheses in func5() indicate that it is a function call, whereas lack of
brackets just passes the function itself.

13.8 Expressions 463

13.8.2.3 Spread operator

The spread operator ... used as a prefix to an argument in a function call spreads an
array into its constituent elements or matrix into columns. It is ignored otherwise. Here
are some examples:

func1(const a, const b, const c, const d)
{

println("func1 received:", "%v", {a} ~ b ~ c ~ d);
}
main()
{

decl a = {1} ~ "two" ~ <1,2,3> ~ 4;

func1(a[0], a[1], a[2], a[3]);
func1(...a);
func1(...a[:2], 99);
func1(...a[:1], ...a[:1]);

}

This prints:
func1 received:{1,"two",<1,2,3 >,4}
func1 received:{1,"two",<1,2,3 >,4}
func1 received:{1,"two",<1,2,3 >,99}
func1 received:{1,"two",1,"two"}

13.8.2.4 Explicit type conversion

Explicit type conversion has the same syntax as a function call, using types int,
double, matrix, string and array:

int double matrix string array
v= 0 0.6 <0.6,1> "tinker" {0,0.6,"tin"}

matrix(v) < 0 > < 0.6 > v < 116 > <0,0.6,.>

double(v) 0.0 v 0.6 error
int(v) v 0 0 116 error
array(v) {0} {0.6} {<0.6,1>} {"tinker"} v

A single character is an integer, so integer 116 corresponds to the character ’t’;
string converts this back to a string:

for (decl i = 0; i < 26; ++i)
println(’a’ + i, " as string: ", string(’a’ + i));

/* prints:
97 as string: a
...
122 as string: z
*/

Calling string on a function returns the function name; on an object the class name.
Use sprint to get the string representation of a value (sprint(”to get it as the Ox code

representation), and sscan to read a value from a string.
A matrix can be converted to an array and vice versa. To convert an array, all

elements must be castable to a double (note that strings are scanned, a string that cannot

464 Chapter 13 Language reference

be read is set to .NaN). A two-dimensional array can be converted to a two-dimensional
matrix, but the array must be rectangular:

println("%v", matrix({{1,2,3},{"4","5","6"}})); // <1,2,3;4,5,6>
println("%v", array(...<1,2,3>)); // {1,2,3}

13.8.2.5 Indexing vector and array types

Vector types (that is, string or matrix) and array types are indexed by postfixing square
brackets. A matrix can have one or two indices, a string only one. For an array type it
depends on the level of indirection.

Note that indexing always starts at zero.
So a 2 × 3 matrix has elements:

[0][0] [0][1] [0][2]
[1][0] [1][1] [1][2]

Three ways of indexing are distinguished:

indexing type matrix, string array example
scalar

√ √
m[0][0]

matrix
√ √

m[0][<0,1,2>]

range
√ √

m[][1:]

Starting with some examples:

decl m = <0,1,2; 10,11,12; 20,21,22>;
// 0 1 2
// 10 11 12
// 20 21 22
println(m[0][0]); // prints 0
println(m[0][]);

// prints 0.00000 1.0000 2.0000
println(m[1][1:]); // prints 11.000 12.000

println(m[.last][.last]); // prints 22
println(m[sizer(m) - 1][sizec(m) - 1]); // also prints 22
println("%v", m[.last-1 :][: .last-1]); // 10,11;20,21>
println(m[sizer(m)][sizec(m)]); // index out of range
println(m[.last + 1][.last]); // index out of range

In the first indexing case (allowed for all non-scalar types), the expression inside
square brackets must have scalar type, whereby double is converted to integer.

Vector types may also be indexed by a matrix or have a range expression inside
the brackets. In a matrix index to a string the first column of the matrix specifies the
selected elements of the string.

It is possible to use only one index to a matrix. If a matrix x is a column or row
vector, x[i] it will pick the ith element from the vector. If x is a matrix, it will treat the
matrix as a vector (row by row, which corresponds to the vecr).

If a matrix is used as an index to a matrix, then each element (row by row, i.e. the
vecr of the argument) is used as an index. As a consequence, indexing by a column
vector or its transpose (a row vector) has the same effect. A matrix in the first index
selects rows, a matrix in the second index selects columns. The resulting matrix is the
intersection of those rows and columns.

13.8 Expressions 465

A range index has the form start-index : end-index. Either the start-index or the
end-index may be missing, which results in the lower-bound or upper-bound being used
respectively. An empty index selects all elements. The resulting type from a range or
empty index is always a vector type.

The ‘magic’ value .last access the last element (its actual value is −256), and
.last-1 the element before that (this is new in Ox 9).

Indexing beyond the end will result in a fatal run-time error. An exception is index-
ing a string for reference: this can be done one position beyond the end, which returns
0. For example, i=s[sizeof(s)] sets i to 0.

Some more examples:
decl mat = < 0:3; 10:13 >, d, m;
decl str = "tinkertailor", s;
decl arr = { "tinker", "tailor", "soldier" };

// mat = <0,1,2,3; 10,11,12,13>
d = mat[0][0]; // d = 0
d = mat[1][2]; // d = 12
m = mat[1][]; // m = <10,11,12,13>
i = 1;
m = mat[1][i:]; // m = <11,12,13>

d = m[1]; // d = <11>
d = m’[1]; // the same: d = <11>
d = mat[5]; // d = <11>

m = mat[][2]; // m = <2; 12>
m = mat[][]; // same as: m = mat;
m = mat[0][<1:3>]; // matrix indexes columns: m = <1,2,3>
m = mat[<1,0,1>][<1,3>]; // m = < 11,13; 1,3; 11,13 >
mat[0][1:3] = 9; // range indexes columns:

// mat = <0,9,9,9; 10,11,12,13>
s = str[6:11]; // s = "tailor"
str[6:11] = ’a’; // str = "tinkeraaaaaa"
s = arr[1]; // s = "tailor"
arr[1][0] = ’a’; // arr[1] = "aailor"

13.8.2.6 String indexing of array types

If an array consists of alternating strings and values, it can be indexed by a string.
Indexing searches for the string in an even location, returning the next element (or
.Null if not found). There are situations where this leads to more readable code. This
is new in Ox 9.

decl arr = {"one": 1, "three": 3, "two": 2};
// same as: decl arr = {"one", 1, "three", 3, "two", 2};
println(arr["two"]); // prints 2
println(arr["four"]); // prints .Null

13.8.2.7 Postfix incrementation

A postfix expression followed by ++ or -- leads to the value of the expression being
evaluated and then incremented or decremented by 1. The operand must be an lvalue
and must have arithmetic type. For a matrix the operator is applied to each element

466 Chapter 13 Language reference

separately. The result of the expression is the value prior to the increment/decrement
operation.

decl mat = < 0:3; 10:13 >, m, i, j;
decl str = "tinkertailor", s;
j = 0;
i = j++; // i = 0, j = 1
m = mat++; // mat = <1,2,3,4; 11,12,13,14>

// m = <0,1,2,3; 10,11,12,13>
str[0]++; // str = "uinkertailor"
str++; // error

13.8.2.8 Transpose

The postfix operator ’ takes the transpose of a matrix. It has no effect on other arith-
metic types of operands. The following translations are made when parsing Ox code:

’ identifier into ’ * identifier
’ (into ’ * (

’ this into ’ * this
A single quote is also used in a character constant; the context avoids ambiguity:

mat = m’ * a’;
mat = m’a’; // interpreted as m’ * a’
mat = m’’; // two ’’ cancel out
mat = m + ’a’; // ’a’ is a character constant

13.8.3 Power expressions

power-expression:
postfix-expression
power-expression ^ unary-expression
power-expression .^ unary-expression

The operands of the power operator must have arithmetic type, and the result is
given in the table. If the first operand is not a matrix .^ and ^ are the same. A scalar
consists of: int, double or 1× 1 matrix.

left a operator right b result computes
int ^ .^ int or double int ab

int/double ^ .^ double double ab

double ^ .^ scalar double ab

scalar ^ .^ matrix m× n matrix m× n abij

matrix m× n .^ scalar matrix m× n abij
matrix m× n .^ matrix m× n matrix m× n a

bij
ij

matrix m×m ^ scalar matrix m×m aint(b)

When a and b are integers, then a ^ b is an integer if b ≥ 0 and if the result can
be represented as a 32 bit signed integer. If b < 0 and a ̸= 0 or the integer result
would lead to overflow, the return type is double, giving the outcome of the floating
point power operation.

13.8 Expressions 467

The first line in the example shows that power has higher precedence than unary
minus:

i = - 2 ^ 2; // i = -4
decl r, m1 = <1,2; 2,1>, m2 = <2,3; 3,2>;
r = m1 .^ 3; // <1,8; 8,1>
r = m1 .^ 3.7; // <1,12.996; 12.996,1>
r = 3 .^ m1; // <3,9; 9,3>
r = 3 ^ m1; // <3,9; 9,3>
r = m1 .^ m2; // <1,8; 8,1>
r = m1 ^ 3; // <13,14; 14,13>
r = m1 ^ 3.7; // <13,14; 14,13>
r = m1 ^ -3; // equivalent to: r = (1 / m1) ^ 3;
r = m1 ^ m2; // error

The following code prints 14 zero matrices of dimension 2× 2:

decl i, ma, m1 = <1,2; 2,1>;

for (i = 0, ma = <1,0; 0,1>; i <= 13; i++, ma *= m1)
print("i = ", i, ma - m1^i);

13.8.4 Unary expressions

unary-expression:
power-expression
++ unary-expression
-- unary-expression
+ unary-expression
- unary-expression
! unary-expression
new class-name (expression-list)
new matrix [expression-list]
new matrix [expression-list] [expression-list]
new string [expression-list]
new array [expression-list]
new array [expression-list] [expression-list]
delete unary-expression

13.8.4.1 Prefix incrementation

A prefix expression preceded by ++ or -- leads to the lvalue being incremented or
decremented by 1. This new value is the result of the operation. The operand must be
an lvalue and must have arithmetic type. For a matrix the operator is applied to each
element separately.

j = 0;
i = ++j; // i = 1, j = 1

468 Chapter 13 Language reference

13.8.4.2 Unary minus and plus

The operand of the unary minus operator must have arithmetic type, and the result is
the negative of the operand. For a matrix each element is set to its negative. Unary plus
is ignored.

13.8.4.3 Logical negation

The operand of the logical negation operator must have arithmetic type, and the result is
1 if the operand is equal to 0 and 0 otherwise. For a matrix, logical negation is applied
to each element. Negating a missing value returns 0, and negating an empty matrix
returns an empty matrix.

j = 0; k = 10;
i = !j; // i = 1
i = !k; // i = 0

13.8.4.4 Reference operator

Up to version 8, & could be used as a unary address operator. Now, however, its use is
more restricted to avoid potential memory access errors: it can only be used to take a
reference in a function call. Moreover, references cannot be stored in other variables.

The operand of the reference operator & must be an lvalue. Tt is possible to take the
reference of a variable, an an array element, or a public class member. It is not possible
to take the reference of a matrix element. The result is a reference to the operand as an
array of one element, pointing to the region of space occupied by the lvalue. Ox does
not have pointers.

test5(const arrstring)
{

arrstring[0][0] = ’x’;
}
test6(astring)
{

astring[0] = ’a’;
}
test4()
{

decl a, str = "spy";

test5(&str); // str="xpy"
test6(str); // str unchanged

}

13.8.4.5 New and delete

The new operator can be used to create an object of a class, or to create a matrix, string
or array. The delete operator removes an object created by new. Note that matrices,
strings and arrays are automatically removed when they go out of scope; this is also
the case for objects (from Ox 9 onwards there is reference counting of objects). A
class object can be removed explicitly using the delete operator. It must be deleted
explicitly when two objects contain references to each other.

13.8 Expressions 469

Only one or two array levels at a time can be created by new; however, delete
removes all sublevels. A string created by new consists of null characters, a matrix will
have all elements zero, array elements will be .Null. Matrix, string and array objects
with dimension zero are allowed (this can be useful to start concatenation in an iterative
loop; remember that an empty matrix constant is <>, and an empty array {}). Matrices
and arrays can be created with either one or two dimensions.

decl i, m1, a1;

m1 = new matrix[2][2]; // m1 = <0,0; 0,0>
m1[0][0] = 1;

delete m1;
a1 = m1[0][0]; // error: contents of m1 deleted

a1 = new array[3];

for (i = 0; i < sizeof(a1); i++)
{

a1[i] = new string[3];
a1[i][0] = ’a’ + i;
a1[i][1] = ’0’ + i;

}

The a1 variable has the following structure:

a1 −→
• −→ "a0\0"

• −→ "b1\0"

• −→ "c2\0"

Examples involving objects of classes are given in §13.5.6.

13.8.5 Multiplicative expressions

multiplicative-expression:
power-expression
multiplicative-expression ** power-expression
multiplicative-expression * power-expression
multiplicative-expression .* power-expression
multiplicative-expression / power-expression
multiplicative-expression ./ power-expression

The operators **, *, .*, /, and ./ group left-to-right and require operands of arith-
metic type. A scalar consists of: int, double or 1 × 1 matrix. Strings and arrays are
allowed in a limited way (new in Ox 9). These operators conform to Table 13.2 on
page 457, except for:

470 Chapter 13 Language reference

left a op right b result computes
matrix m× n * matrix n× p matrix m× p ai.b.k
matrix m× n ** matrix p× q matrix mp× nq aijb
scalar * matrix n× p matrix n× p abij
matrix m× n * scalar matrix m× n aijb
matrix m× n / matrix p× n matrix p×m ai.b

+
.k

scalar / matrix m× n matrix n×m ab+ij
matrix m× n / scalar matrix m× n aij/b
scalar / ./ scalar double a/b
string m * scalar string m× b aa...a
string m * array p array p abj
array m * scalar array m× b a0, ..., am−1, a0, ..., am−1, ...
scalar * array m array m× b a0, ..., a0, a1, ..., a1, ...
array m * array p array m× p a0b0, ..., a0bp−1, a1b1, ...
array m .* array m array m a0b0, ..., am−1bm−1

This implies that * ** are the same as .* when one or both arguments are scalar, and
similarly for / and verb./ when the right-hand operand is not a matrix.

Kronecker product is denoted by **. If neither operand is a matrix, this is identical
to normal multiplication.

The binary * operator denotes multiplication. If both operands are a matrix and
neither is scalar, this is matrix multiplication and the number of columns of the first
operand has to be identical to the number of rows of the second operand.

The .* operator defines element by element multiplication. It is only different from
* if both operands are a matrix (these must have identical dimensions, however, if one
or both of the arguments is a 1× 1 matrix, * is equal to .*).

The product of two integers remains an integer. This means that overflow could
occur (when it would not occur in operations where one of the argument is a double).
For example 5000 * 50000 fits in an integer and yields 250 000 000, but 50000 *

50000 overflows, yielding −1.794 967 296. When using double arithmetic: 50000.0
* 50000 = 2500 000 000.0.

The binary / operator denotes division. If the second operand is a non-scalar matrix,
this is identical to post-multiplication by the inverse (if the matrix is square the matrix is
inverted using the invert() library function; if that fails, or the matrix is non-square,
the generalized inverse is used, see §13.8.5.1). If the second operand is a scalar, each
element of the first is divided by it. If the first operand is a scalar, it is multiplied by the
inverse of the second argument.

The ./ operator defines element by element division. If either argument is not a
matrix, this is identical to normal division. It is only different from / if both operands
are a matrix (these must have identical dimensions).

Note that / does not support integer division (such as e.g. 3 / 2 resulting in 1). In
Ox, the result of dividing two integers is a double (3 / 2 gives 1.5). Integer division
can be performed using the idiv library function. The remainder operator (% in C and
C++) is supported through the library function imod. Multiplication of two integers
returns an integer.

Some examples of multiplication and division involving matrices:

13.8 Expressions 471

decl m1 = <1,2; 2,1>, m2 = <2,3; 3,2>, r;

r = m1 * 2.; // <2,4; 4,2>
r = 2. * m2; // <4,6; 6,4>
r = m1 * m2; // <8,7; 7,8>
r = m1 .* m2; // <2,6; 6,2>
r = m1 .* <2,3>; // <2,6; 4,3>
r = m1 ** m2; // <2,3,4,6; 3,2,6,4; 4,6,2,3; 6,4,3,2>
r = 2 / 3; // 0.666667
r = 2 / 3.; // 0.666667
r = m1 / 2.; // <0.5,1; 1,0.5>
r = m1 ./ <2;3>; // <0.5,1; 0.66667,0.33333>
r = 2./ m2; // <-0.8,1.2; 1.2,-0.8>
r = 2 ./ m2; // <1,0.66667; 0.66667,1>
r = m2 / m2; // <1,0; 0,1>

r = 1/<1;2>; // <0.2,0.4>
r = 1/<1,2>; // <0.2; 0.4>
r = 1/<0,0;0,0>; // <0,0; 0,0>

Notice the difference between 2./ m2 and 2 ./ m2. In the first case, the dot is in-
terpreted as part of the real number 2., whereas in the second case it is part of the
./ dot-division operator. The white space is used here to change the syntax (as in the
example in §13.8.2.8); it would be more clear to write the second case as 2.0 ./ m2.
The same difference applies for dot-multiplication, but note that 2.0*m2 and 2.0.*m2

give the same result.

13.8.5.1 Generalized inverse

The n × m generalized inverse A+ of an m × n matrix A is determined using the
singular value decomposition:

A = UWV ′,

with:

U is m× n and U ′U = In,
W is r × n and diagonal, with non-negative diagonal elements wi,
V is n× n and V ′V = In.

The generalized inverse A+ is computed as:

A+ = VW+U ′,

where the diagonal elements of W+ are given by:

w−1
i =

1/wi if wi > 10ϵinv||A||∞,
0 otherwise.

The rank of A is the number of non-zero wi. The inversion epsilon, ϵinv , is set by the
inverteps function. By default ϵinv = 1000ϵm, where ϵm is the machine precision
for doubles (≈ 2× 10−16) and

||A||∞ = max
0≤i<m

n−1∑
j=0

|aij |.

472 Chapter 13 Language reference

When n > m the singular value decomposition is applied to A′ to avoid a large V
matrix:

A+ = UW+V ′,

where U and V derive from A′ = UWV ′.

Note that the generalized inverse of a square non-singular matrix corresponds to the
normal inverse. The generalized inverse of a matrix consisting of zeros only is a matrix
of zeros. This follows from the four Moore–Penrose conditions for A+:

AA+A = A, A+AA+ = A+,
(
AA+

)′
= AA+,

(
A+A

)′
= A+A.

13.8.6 Additive expressions

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

The additive operators + and - are dot-operators, conforming to Table 13.2 on
page 457. The exception is that adding strings amounts to concatenation, and sub-
traction involving strings is not allowed. Both operators group left-to-right. They re-
spectively return the sum and the difference of the operands, which must both have
arithmetic type. Matrices must be conformant in both dimensions, and the operator is
applied element by element. For example:

decl m1 = <1,2; 2,1>, m2 = <2,3; 3,2>;

r = 2 - m2; // <0,-1; -1,0>
r = m1 - m2; // <-1,-1; -1,-1>

13.8.7 Concatenation expressions

horizontal-concatenation-expression:
additive-expression
horizontal-concatenation-expression ~ additive-expression

vertical-concat-expression:
horizontal-concatenation-expression
vertical-concat-expression | horizontal-concatenation-expression

13.8 Expressions 473

left operator right result
int/double ~ int/double matrix 1× 2

int/double ~ matrix m× n matrix m× (1 + n)

matrix m× n ~ int/double matrix m× (n+ 1)

matrix m× n ~ matrix p× q matrix max(m, p)× (n+ q)

int/double | int/double matrix 2× 1

int/double | matrix m× n matrix (1 +m)× n

matrix m× n | int/double matrix (m+ 1)× n

matrix m× n | matrix p× q matrix (m+ p)×max(n, q)
int ~ | string string
string ~ | int string
string ~ | string string
array ~ | array array
array ~ | any basic type array

If both operands have arithmetic type, the concatenation operators are used to create
a larger matrix out of the operands. If both operands are scalar the result is a row vector
(for ~) or a column vector (for |). If one operand is scalar, and the other a matrix, an
extra column (~) or row (|) is pre/appended. If both operands are a matrix, the matrices
are joined. Note that the dimensions need not match: missing elements are set to zero
(however, a warning is printed of non-matching matrices are concatenated). Horizontal
concatenation has higher precedence than vertical concatenation.

Two strings or an integer and a string can be concatenated, resulting in a longer
string. Both horizontal and vertical concatenation yield the same result.

The result is most easily demonstrated by examples:
print(1 ~ 2 ~ 3 | 4 ~ 5 ~ 6); // <1,2,3; 4,5,6>
print("tinker" ~ ’&’ ~ "tailor"); // "tinker&tailor"
print(<1,0; 0,1> ~ 2); // <1,0,2; 0,1,2>
print(2 | <1,0; 0,1>); // <2,2; 1,0; 0,1>
print(<2> ~ <1,0; 0,1>); // <2,1,0; 0,0,1>

The first two lines could have been written as:
print(<1,2,3; 4,5,6>);
print("tinker" "&" "tailor");

In the latter case, the matrix and string are created at compile time, whereas in the for-
mer case this is done at run time. Clearly, the compile time evaluation is more efficient.
However, only the concatenation expressions can involve non-constant variables:

decl i1 = 1, i2 = 2, s1 = "tinke";

print(i1 ~ i2); // <1,2>
print(s1 ~ ’r’); // "tinker"

Array concatenation results in an array with combined size, with assignment of each
member of both arrays to the new array.

decl i, a1 = {"tinker", "tailor"}, a2 = {"soldier"};

a1 ~= a2;
print(a1);

474 Chapter 13 Language reference

prints:

[0] = tinker
[1] = tailor
[2] = soldier

Often, concatenation is required in a loop. In that case, it is convenient to start from
a matrix of dimension zero, for example:

decl m, i;

for (i = 0, m = <>; i < 4; ++i)
m ~= i;

print(m); // m = <0, 1, 2, 3>

13.8.8 Relational expressions

relational-expression:
vertical-concat-expression
relational-expression < vertical-concat-expression
relational-expression > vertical-concat-expression
relational-expression <= vertical-concat-expression
relational-expression >= vertical-concat-expression
relational-expression .< vertical-concat-expression
relational-expression .> vertical-concat-expression
relational-expression .<= vertical-concat-expression
relational-expression .>= vertical-concat-expression

The relational operators are <, <=, >, >=, standing for ‘less’, ‘less or equal’,
‘greater’, ‘greater or equal’. They all yield 0 if the specified relation is false, and 1
if it is true. The type of the result is always an integer, see Table 13.3. If both operands
are a matrix, the return value is true if the relation holds for each element. If one of the
operands is of scalar-type, and the other of matrix-type, each element in the matrix is
compared to the scalar, and the result is true if each comparison is true. Two arrays are
equal if all dimensions are identical and all the entries are equal.

The dot relational operators are .<, .<=, .>, .>=, standing for ‘dot less’, ‘dot less
or equal’, ‘dot greater’, ‘dot greater or equal’. They conform to Table 13.2 on page 457.

If both arguments are scalar, the result type inherits the higher type, so 1 >= 1.5

yields a double with value 0.0. If both operands are a matrix the return value is a matrix
with a 1 in each position where the relation is true and zero where it is false. If one of
the operands is of scalar-type, and the other of matrix-type, each element in the matrix
is compared to the scalar returning a matrix with 1 at each position where the relation
holds.

String-type operands can be compared in a similar way. If both operands are a
string, the results is int with value 1 or 0, depending on the case sensitive string com-
parison.

Examples are given in the next section.

13.8 Expressions 475

13.8.9 Equality expressions

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression
equality-expression .== relational-expression
equality-expression .!= relational-expression

The == (is equal to), != (is not equal to), .== (is dot equal to) and .!= (is not dot
equal to) are analogous to the relational operators, but have lower precedence.

The non-dotted versions conform to Table 13.3. The dotted versions conform to
Table 13.2 on page 457. String comparison is case sensitive (also see isfeq).

For example:

decl m1 = <1,2; 2,1>, m2 = <2,3; 3,2>, s1 = "tinke";

print(m1 == 1); // 0
print(m1 != 1); // 0
print(!(m1 == 1)); // 1
print(m1 > m2); // 0
print(m1 < m2); // 1
print(s1 <= "tinker"); // 1
print(s1 <= "tink"); // 0
print(s1 == "tinker"); // 0
print(s1 >= "tinker"); // 0
print(s1 == "Tinke"); // 0

print(m1 .== 1); // <1,0; 0,1>
print(m1 .!= 1); // <0,1; 1,0>
print(m1 .> m2); // <0,0; 0,0>
print(m1 .< m2); // <1,1; 1,1>

print("AACGTGGC" .== "ACCTTGGC"); // <1,0,1,0,1,1,1,1>
print("AACGTGGC" .== ’A’); // <1,1,0,0,0,0,0,0>

The non-dotted versions only return true if the relation holds for each element. In the
first two examples neither m1 == 1 nor m1 != 1 is true for each element, hence the
return value 0. The third example shows how to test if a matrix is not equal to a value.
The parenthesis are necessary, because ! has higher precedence than ==, and !m1 ==

1 results in <0,0; 0,0> == 1 which is false.
The last four examples use dot-relational expressions, resulting in a matrix of zeros and
ones. In if statements, it is possible to use such matrices. Remember that a matrix is
true if all elements are true (i.e. no element is zero). In the example below, both if

(m1 .== 1) and if (m1 .!= 1) result in the else part being executed:

evaluates to leads to
if (m1 .== 1) if (<1,0;0,1>) else part
if (m1 .!= 1) if (<0,1;1,0>) else part
if (m1 == 1) if (0) else part
if (m1 != 1) if (0) else part

and both have at least one zero, so that both test statements are false.

476 Chapter 13 Language reference

The any library function evaluates to TRUE if any element is TRUE, e.g.
evaluates to leads to

if (any(m1 .== 1)) if (any(<1,0;0,1>)) if part
if (any(m1 .!= 1)) if (any(<0,1;1,0>)) if part
if (m1 == 1) if (0) else part
if (m1 != 1) if (0) else part

Consider a few more examples, using the matrix m2 = <2,2;2,2>:
evaluates to leads to

if (m2 .== 2) if (<1,1;1,1>) if part
if (m2 .!= 2) if (<0,0;0,0>) else part
if (m1 .== <1,2; 2,1>) if (<1,1;1,1>) if part
if (m1 - 1) if (<0,1;1,0>) else part
if (m1 .>= 1) if (<1,1;1,1>) if part
if (m1 .> 1) if (<0,1;1,0>) else part
if (m2 == 2) if (1) if part
if (m2 != 2) if (0) else part
if (m1 >= 1) if (1) if part
if (m1 > 1) if (0) else part

13.8.10 Logical dot-AND expressions

logical-dot-and-expression:
equality-expression
logical-dot-and-expression .&& equality-expression

The .&& operator groups left-to-right. It returns 1 if both of its operands compare
unequal to 0, 0 otherwise. Both operands must have arithmetic type. Handling of
matrix-type is as for dot-relational operators: if one or both operands is a matrix, the
result is a matrix of zeros and ones. Unlike the non-dotted version, both operands
will always be executed. For example, in the expression func1() .&& func2() the
second function is called, regardless of the return value of func1().

13.8.11 Logical-AND expressions

logical-and-expression:
logical-dot-and-expression
logical-and-expression && logical-dot-and-expression

The && operator groups left-to-right.
The a && b expression returns a if a is false (0 or .NaN, for a matrix: least one 0 or

.NaN, see §13.7.1); in that case b is not evaluated. If a is true (not false), the expression
returns b.

In the expression func1() && func2() the second function will not be called if
the first function returns false.

13.8 Expressions 477

13.8.12 Logical dot-OR expressions

logical-dot-or-expression:
logical-and-expression
logical-dot-or-expression .|| logical-and-expression

The .|| operator groups left-to-right. It returns 1 if either of its operands compares
unequal to 0, 0 otherwise. Both operands must have arithmetic type. Handling of
matrix-type is as for dot-relational operators: if one or both operands is a matrix, the
result is a matrix of zeros and ones. Unlike the non-dotted version, both operands
will always be executed. For example, in the expression func1() .|| func2() the
second function is called, regardless of the return value of func1().

13.8.13 Logical-OR expressions

logical-or-expression:
logical-dot-or-expression
logical-or-expression || logical-dot-or-expression

The || operator groups left-to-right.
The a || b expression returns a if a is true (not 0 or .NaN, for a matrix: no element

is 0 or .NaN, see §13.7.1); in that case b is not evaluated. If a is false, the expression
returns b.

In the expression func1() || func2() the second function will not be called if
the first function returnes true.

For example:

decl x = .NaN;
println("0 || 9= ", 0 || 9); // 0 || 9= 9
println("2 || 9= ", 2 || 9); // 2 || 9= 2
println("x || 9= ", x || 9); // x || 9= 9
println("x || 0= ", x || 0); // x || 0= 0
println("0 || x= ", 0 || x); // 0 || x= .NaN
println("0 && 9= ", 0 && 9); // 0 && 9= 0
println("2 && 9= ", 2 && 9); // 2 && 9= 9
println("x && 9= ", x && 9); // x && 9= .NaN
println("x && x= ", x && x); // x && x= .NaN
println("0 && x= ", 0 && x); // 0 && x= 0

13.8.14 Conditional expression

conditional-expression:
logical-or-expression
logical-or-expression ? expressionopt : conditional-expression
logical-or-expression .? expression .: conditional-expression

Both the conditional and the dot-conditional expression are ternary expressions.
For the conditional expression, the first expression (before the ?) is evaluated. If it

is true, the result is the second expression, otherwise the third expression. If there is no
expression between ? and :, the value of the logical expression that is left on the stack
is used instead.

478 Chapter 13 Language reference

The dot-conditional expression only differs from the conditional expression if the
first expression evaluates to a matrix, here called the test matrix. In that case the result
is a matrix of the same size as the test matrix, and the test matrix can be seen as a filter:
non zero elements get a value corresponding to the second expression, zero elements
corresponding to the third expression. If the second or third expression is scalar, each
matrix element will get the appropriate scalar value. If it is a matrix, the corresponding
matrix element will be used, unless the matrix is too small, in which case the value
0. will be used. Note that in the dot-conditional expression both parts are executed,
whereas in the conditional expression only one of the two parts is executed.

decl r, m2;

r = <1,0; 0,1> ? 4 : 5; // 5, matrix is true if no element is 0
r = <1,0; 0,1> .? 4 .: 5; // <4,5; 5,4>
m2 = <1>;
r = r .== 4 .? m2 .: 0; // <1,0; 0,0>
r = 0 ? 1 : 2; // 2
r = 3 ? 1 : 2; // 1
r = .NaN ? 1 : 2; // 2
r = .NaN ?: 2; // 2

13.8.15 Assignment expressions

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= /= += -= ~= |= .*= ./=

The assignment operators are the simple assignment = as well as the compound
= /= += -= ~= |= .= ./= assignment operators. An lvalue is required
as the left operand. The type of an assignment is that of its right operand. The com-
pound assignment l op= r is equivalent to l = l op (r).

If the left-hand side is a comma-separated list in square brackets, the statement is a
multiple assignment expression, see §13.8.1.1.

The following code:

decl i, k;
for (i = 0, k = 1; i < 5; i += 2)

k *= 2, print("i = ", i, " k = ", k, "\n");

writes:

i = 0 k = 2
i = 2 k = 4
i = 4 k = 8

Assignment of an array to part of an array (i.e. using selection on the left-hand side)
uses the array contents of right-hand side. So, when both as1 and as2 are arrays (of
strings e.g.)

as1[0:1] = as2

is executed as:
as1[0] = as2[0], as1[1] = as2[1];

13.9 File inclusion and preprocessing 479

thus preserving the array level in as1.
Assigning an object to another variable only passes a reference: both will refer to

the same object. The clone library function makes a copy which should be removed
using delete.

13.8.16 Comma expression

expression:
assignment-expression
expression , assignment-expression

A pair of expressions separated by a comma is evaluated left to right, and the value
of the left expression is discarded. The result will have type and value corresponding to
the right operand. The example in the previous section has two instances of the comma
operator. The second could be omitted as follows:

for (i = 0, k = 1; i < 5; i += 2)
{ k *= 2;

print("i = ", i, " k = ", k, "\n");
}

or as:

for (i = 0, k = 1; i < 5; i += 2)
print("i = ", i, " k = ", k *= 2, "\n");

13.8.17 Constant expressions

An expression that evaluates to a constant is required in initializers and certain prepro-
cessor expressions. A constant expression can have the operators * / + -, but only if
the operands have scalar type. Some examples were given in sections 13.5.1 and 13.5.4.

13.9 File inclusion and preprocessing

Preprocessor commands in Ox are used for inclusion of files and conditional compi-
lation of code. We follow the C or C++convention although Ox does not use a real
preprocessor: instead the commands are handled at the external level by the compiler.
They affect the handling of source code, but do not result in executable code by them-
selves.

13.9.1 Using folder names in Ox

Folder names may have forward or backslashes (even mixed), both are handled as path
separators.

Escape sequences are not interpreted in include and import string below, except that
\\ is translated to \.

480 Chapter 13 Language reference

13.9.2 Search path in Ox

The default search path in Ox is given by:
user/OxMetrics9/ox/include
user/OxMetrics9/apps
user/OxMetrics9/ox
install/OxMetrics9/ox/include
install/OxMetrics9/apps
install/OxMetrics9/ox

Where install is the installation folder (e.g. C:/Program Files), and user is your user
folder. The user folders are only included if user/OxMetrics9/ox exists.

Note that the default search path has changed from Ox 8 to Ox 9 with the addition
of the apps folder and the user folders.

The default search path can be changed as follows
• setting the OX9PATH environment string replaces the default search paths;
• on the command line using -i to add folders, or -x to clear the current path.
• Opening a file in Ox code, or importing a dynamic-link library, will also search

along paths added with import statements.

13.9.3 File inclusion

A line of the form
#include "filename"

will insert the contents of the specified file at that position. The file is searched for as
follows:
1. in the folder containing the source file (if just a filename, or a filename with a relative

path is specified), or in the specified directory (if the filename has an absolute path);
2. along the search path;
3. in the current folder.

A line of the form
#include <filename>

will skip the first step, and search as follows:
1. along the serach path;
2. in the current folder.

The quoted form is primarily for inclusion of user created header or code files,
whereas the second form will be mainly for header files that are an integral part of Ox.
The default extension for Ox header files is .oxh.2

If the file cannot be found, and it is unclear why, use the -v command line option
for debugging.

13.9.4 Import of modules

The #import preprocessor statement makes it easier to import compiled code modules.
The statement can only happen at the external level, and has the form:

2Up to version 6 the .h extension was used. For compatibility with older code, when a .h is
included, the search is first for the file with a .oxh extension, and, if that fails, for the .h file.

13.9 File inclusion and preprocessing 481

#import <modulename>

For example
#import <pcnaive>

has the following effect:
1. #include <pcnaive.oxh>

The header file is inserted at that location.
2. link the pcnaive.oxo file when the program is run, or if this is not found:
3. compile and link the pcnaive.ox file when the program is run.

Similarly:
#import "pcnaive"

has the following effect:
1. #include "pcnaive.oxh"

The header file is inserted at that location.
2. link pcnaive.oxo (or pcnaive.ox if the .oxo file is not found) when the program

is run.
The import statement marks the file for linking, but that linking only happens when

the file is executed. Even when a module is imported multiple times, it will only be
linked in once. Similarly, the header file will not be included more than once in the
same source code file.

If the import name ends in a backward/forward slash, no header file is included, but
the path will be searched when trying to find a DLL or loading a data file into Ox.

Again, if the file cannot be found, and it is unclear why, use the -v command line
option for debugging.

13.9.5 Conditional compilation

The first step in conditional compilation is to define (or undefine) identifiers:
#define identifier
#undef identifier

Identifiers so defined only exist during the scanning process of the input file, and
can subsequently be used by #ifdef and #ifndef preprocessor statements:

#ifdef identifier
#ifndef identifier
#else

#endif

As an example, consider the following header file:
#ifndef OXSTD_INCLUDED
#define OXSTD_INCLUDED

// header statements

#endif

Now multiple inclusion of the header file into a source code file will only once include
the actual header statements; on second inclusion, OXSTD_INCLUDED will be defined,
and the code skipped.

Another example uses some predefined constants (see Ch. 9):

482 Chapter 13 Language reference

#include <oxstd.oxh>

main()
{
#ifdef OX_BIG_ENDIAN

print("This is a big endian machine.\n");
#else

print("This is a little endian machine.\n");
#endif

#ifdef OX_Windows
print("This program is running under Windows.\n");

#endif
}

13.9.6 Pragmas

Pragmas influence the parsing process of the Ox compiler. Pragmas may only occur at
the level of external declarations. The only pragma currently in use is ox stdlib and
for internal use only.

13.10 Some differences with C and C++

There are some differences between Ox and C/C++ which might cause confusion:
• Integer division is not used, so 1 / 2 yields 0.5, instead of 0. Use idiv(1, 2) for

integer division of 1 by 2.
• /* */ type comments can be nested in Ox.
• sizeof is a function in Ox, not an operator (and not a reserved word).
• By default, all data members of a class are private, all function members public.
• The base class constructor and destructor functions are not called automatically.
• The preprocessor does not allow: #define XXX value.

For integer constants, enums could be used, or: const decl XXX = value;.
• Labels (targets of goto statements) have the colon prefixed, rather than suffixed.

Part III

Appendix

Appendix A1

Some matrix algebra

This chapter summarizes the matrix algebra necessary to understand the matrix capa-
bilities of Ox. For a more thorough overview consult Magnus and Neudecker (1988),
Dhrymes (1984), Rao (1973, Chapter 1) or Anderson (1984, Appendix A), among many
others.

To define the elementary operators on matrices we shall write (aij)m,n for them×n
matrix A when this is convenient:

A = (aij)m,n =

 a11 · · · a1n
...

...
am1 · · · amn

 .

So, for example the 3× 2 matrix of ones is:(
1 1 1
1 1 1

)
.

• addition, A is m× n, B is m× n:

A+B = (aij + bij)m,n .

• multiplication, A is m× n, B is n× p, c is a scalar:

AB =

(
n∑

k=1

aikbkj

)
m,p

, cA = (caij)m,n .

• dot-multiplication (hadamard product), A is m× n, B is m× n:

A⊙B = (aijbij)m,n .

For example:

Ω⊙ S =

(
ω11s11 ω12s12
ω21s21 ω22s22

)
.

485

486 Appendix A1 Some matrix algebra

• kronecker product, A is m× n, B is p× q:

A⊗B = (aijB)mp,nq .

For example, with Ω = (ωij)2,2 , S = (sij)2,2:

Ω⊗ S =


ω11s11 ω11s12 ω12s11 ω12s12
ω11s21 ω11s22 ω12s21 ω12s22
ω21s11 ω21s12 ω22s11 ω22s12
ω21s21 ω21s22 ω22s21 ω22s22

 .

• transpose, A is m× n:
A′ = (aji)n,m .

• determinant, A is n× n:

|A| =
∑

(−1)c(j1,...,jn)
n∏

i=1

aiji

where the summation is over all permutations (j1, . . . , jn) of the set of integers
(1, . . . , n), and c(j1, . . . , jn) is the number of transpositions required to change
(1, . . . , n) into (j1, . . . , jn). In the 2× 2 case the set (1, 2) can be transposed once
into (2, 1), so |Ω| = (−1)0ω11ω22 + (−1)1ω12ω21.

• trace, A is n× n:

trA =

n∑
i=1

aii.

• rank, A is m× n: the rank of A is the number of linearly independent columns (or
rows, row rank always equals column rank) in A, r(A) ≤ min(m,n). If A is n×n
and of full rank then:

r (A) = n.

• symmetric matrix, A is n× n: A is symmetric if:

A′ = A.

• matrix inverse, A is n × n and of full rank (non-singular, which is equivalent to
|A| ≠ 0) then A−1 is the unique n× n matrix such that:

AA−1 = I.

This implies that A−1A = I; I is the n× n identity matrix:
1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

 .

Appendix A1 Some matrix algebra 487

• orthogonal matrix, A is n× n: A is orthogonal if:

A′A = I.

Then also AA′ = I; further: r(A) = n, A′ = A−1.
• orthogonal complement, A is m× n, m > n and r(A) = n, define the orthogonal

complement A⊥ as the m× (m− n) matrix such that: A′A⊥ = 0 with r(A⊥) =
m − n and r(A : A⊥) = m. A⊥ spans the null space of A; r(A⊥) is called the
nullity of A.

• idempotent matrix, A is n× n: A is idempotent if:

AA = A.

An example is the projection matrix MX = I−X (X′X)
−1

X′.
• vectorization, A is m× n:

vecA =



a11
...

am1

...
a1n

...
amn


,

which is an mn× 1 vector consisting of the stacked columns of A.
If A is n× n and symmetric, we can use the vech operator to vectorize the unique
elements, thus ignoring the elements above the diagonal:

vechA =



a11
...
an1
a22

...
an2

...
ann


,

which is a 1
2n(n+ 1)× 1 vector.

• diagonalization, A is n× n:

dgA =


a11 0 · · · 0
0 a22 · · · 0
...

...
...

0 0 · · · ann

 = diag (a11, a22, . . . , ann) .

488 Appendix A1 Some matrix algebra

• positive definite, A is n × n and symmetric: A is positive definite if x′Ax > 0
for all n × 1 vectors x ̸= 0, positive semi-definite if x′Ax ≥0 for all x ̸= 0, and
negative definite if x′Ax <0 for all x ̸= 0.

• eigenvalues and eigenvectors, A is n× n: the eigenvalues of A are the roots of the
characteristic equation:

|A− λI| = 0.

If λi is an eigenvalue of A, then xi ̸= 0 is an eigenvector of A if it satisfies:

(A− λiI)xi = 0.

• Choleski decomposition, A is n× n summetric and positive definite, then:

A = PP′,

where P is a unique lower triangular matrix with positive diagonal elements.
• LU decomposition, A is n× n, then:

A = LU′,

where L is a lower triangular matrix with ones on the diagonal and U is upper
diagonal.

• singular value decomposition, decomposes an m× n matrix A, m ≥ n , into:

A = UWV′,

with:

U is m× n and U′U = In,
W is n× n and diagonal, with non-negative diagonal elements,
V is n× n and V′V = In.

The diagonal of W holds the singular values. The number of non-zero singular
values is the rank of A, also see §13.8.5.1.
The SVD can be used to find the orthogonal complement of A. Assume r(A) = n
and compute the singular value decomposition of the (m×m) matrix B = (A : 0).
The last m− n diagonal elements of W will be zero. Corresponding to that are the
last m− n columns of U which form A⊥:

B = (A : 0) = UWV′ = (U1 : U2)

(
W1 0
0 0

)(
V′

1

V′
2

)
.

Here U, V and W are (m×m) matrices; U′
2U1 = 0 so that U′

2A =
U′

2U1W1V
′
1 = 0 and r(A : U2) = m as U′

2U2 = I.
• differentiation, define f (·) : Rm 7→ R then:

∇f =
∂f (a)

∂a
=


∂f(a)
∂a1

...
∂f(a)
∂am

 , ∇2f =
∂2f (a)

∂a∂a′
=

(
∂2f (a)

∂ai∂aj

)
m,m

.

Appendix A1 Some matrix algebra 489

If f (·) is a log-likelihood function we shall write q (·) for the first derivative (or
score), and H (·) for the second derivative (or Hessian) matrix.
For f (·) : Rm×n 7→ R we define:

∂f (A)

∂A
=

(
∂f (A)

∂aij

)
m,n

.

• Jacobian matrix, for a vector function f (·) : Rm 7→ Rn we define the n × m
Jacobian matrix J:

∂f (a)

∂a′
=


∂f1(a)
∂a1

· · · ∂f1(a)
∂am

...
...

∂fn(a)
∂a1

· · · ∂fn(a)
∂am

 =

 (∇f1)′
...

(∇fm)
′

 = (∇f)
′
.

The transpose of the Jacobian is called the gradient, and corresponds to the q (·)
above for n = 1 (so in that case the Jacobian is 1 ×m and the score n × 1). The
Jacobian is the absolute value of the determinant of J when m = n: ||J||.
Normally we wish to compute the Jacobian matrix for a transformation of a coeffi-
cient matrix: Ψ = F (Π′) where F is a matrix function F (·) : Rm×n 7→ Rp×q:

J =
∂vecΨ

∂ (vecΠ′)
′ ,

with Π n×m and Ψ p× q so that J is pq ×mn.

References

Abramowitz, M. and I. A. Stegun (1970). Handbook of Mathematical Functions. New York:
Dover Publications Inc.

Abramowitz, M. and I. A. Stegun (1984). Pocketbook of Mathematical Functions. Frank-
furt/Main: Verlag Harri Deutsch.

Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis, (2nd ed.). New
York: John Wiley & Sons.

Barndorff-Nielsen, O. E. and N. Shephard (2001). Lévy Based Dynamic Models for Financial
Economics. Oxford: Draft book, Nuffield College.

Barnett, S. (1990). Matrices – Methods and Applications. Oxford: Clarendon Press.
Berndt, E. K., B. H. Hall, R. E. Hall, and J. A. Hausman (1974). Estimation and inference in

nonlinear structural models. Annals of Economic and Social Measurement 3, 653–665.
Berry, K. J., P. W. Mielke Jr, and G. W. Cran (1977). Remark AS R83: A remark on algorithm

AS 109: Inverse of the incomplete beta function ratio. Applied Statistics 39, 309–310.
Best, D. J. and N. I. Fisher (1979). Efficient simulation of the von Mises distribution. Applied

Statistics 28, 152–157.
Best, D. J. and D. E. Roberts (1975). Algorithm AS 91: The percentage points of the χ2

distribution. Applied Statistics 24, 385–389.
Brockwell, P. J. and R. A. Davis (1991). Time Series: Theory and Methods. New York:

Springer-Verlag.
Chambers, J. M., C. L. Mallows, and B. W. Sturk (1976). A method for simulating stable

random variables. Journal of the American Statistical Association 71, 340–344.
Cooper, B. E. (1968). Algorithm AS 3: The integral of student’s t-distribution. Applied Statis-

tics 17, 189–190.
Cran, G. W., K. J. Martin, and G. E. Thomas (1977). Remark AS R19 and algorithm AS

109: A remark on algorithms AS 63: The incomplete beta integral; AS 64: Inverse of the
incomplete beta function ratio. Applied Statistics 26, 111–114.

Dagnapur, J. (1988). Principles of Random Variate Generation. Oxford: Clarendon Press.
Dennis Jr., J. E. and R. B. Schnabel (1983). Numerical Methods for Nonlinear Equations and

Unconstrained Optimization,. Englewood Cliffs, NJ: Prentice Hall.
Devroye, L. (1986). Non-Uniform Random Variate Generation. New York: Springer-Verlag.
Dhrymes, P. J. (1984). Mathematics for Econometrics, (2nd ed.). New York: Springer-Verlag.
Ding, C. G. (1992). Algorithm AS 275: Computing the non-central χ2 distribution function.

Applied Statistics 41, 478–483.
Doornik, J. A. (2005). An improved ziggurat method to generate normal random samples.

Mimeo, Nuffield College.

491

492 REFERENCES

Doornik, J. A. (2006). The role of simulation in econometrics. In T. Mills and K. Patter-
son (Eds.), Palgrave Handbook of Econometrics, pp. 787–811. Basingstoke: Palgrave
MacMillan.

Doornik, J. A. (2007). Conversion of high-period random numbers to floating point. ACM
Transactions on Modeling and Computer Simulation 17.

Doornik, J. A. and D. F. Hendry (2013). Modelling Dynamic Systems using PcGive: Volume
II (5th ed.). London: Timberlake Consultants Press.

Doornik, J. A. and M. Ooms (2006). Introduction to Ox (2nd ed.). London: Timberlake Con-
sultants Press.

Dubrulle, A. (1970). A short note on the implicit ql algorithm for symmetric tridiagonal ma-
trices. Numerische Mathematik 15, 450.

Engler, E. and B. Nielsen (2009). The empirical process of autoregressive residuals. Econo-
metrics Journal 12, 367–381.

Feng, R. B. and P. D. Pulliam (1997). Tensor-gmres method for large systems of nonlinear
equations. SIAM Journal of Optimization 7, 757–779.

Fisher, N. I. (1993). Statistical Analysis of Circular Data. New York: Cambridge University
Press.

Fletcher, R. (1987). Practical Methods of Optimization, (2nd ed.). New York: John Wiley &
Sons.

Genz, A. (2000). Numerical computation of bivariate and trivariate normal probabilities.
Mimeo, Washington State University, Pullman, WA.

Golub, G. H. and C. F. Van Loan (1989). Matrix Computations. Baltimore: The Johns Hopkins
University Press.

Granger, C. W. J. and P. Newbold (1986). Forecasting Economic Time Series, (2nd ed.). New
York: Academic Press.

Green, P. J. and B. W. Silverman (1994). Nonparametric Regression and Generalized Linear
Models. A Roughness Penalty Approach. London: Chapman and Hall.

Harvey, A. C. (1993). Time Series Models, (2nd ed.). Hemel Hempstead: Harvester Wheat-
sheaf.

Hastie, T. J. and R. J. Tibshirani (1994). Generalized Additive Models. London: Chapman and
Hall.

Hendry, D. F., A. J. Neale, and N. R. Ericsson (1991). PC-NAIVE, An Interactive Program
for Monte Carlo Experimentation in Econometrics. Version 6.0. Oxford: Institute of Eco-
nomics and Statistics, University of Oxford.

Hill, G. W. (1981). Remark on Algorithm 396: Student’s t-quantiles [s14]. ACM Transactions
on Mathematical Software 7, 250–251.

Hill, I. D. (1973). Algorithm AS 66: The normal integral. Applied Statistics 22, 424–427.
Kemp, A. W. (1981). Efficient generation of logarithmically distributed pseudo-random vari-

ables. Applied Statistics 30, 249–253.
Kernighan, B. W. and D. M. Ritchie (1988). The C Programming Language (2nd ed.). Engle-

wood Cliffs, NJ: Prentice Hall.
Kiefer, N. M. (1989). The ET interview: Arthur S. Goldberger. Econometric Theory 5, 133–

160.
Lacey, S. and R. Box (1991). A fast, easy sort. Byte April.
LAPACK (1999). LAPACK Users’ Guide (3rd ed.). Philadelphia: SIAM. By Anderson, E. and

Bai, Z. and Bischof, C. and Blackford, S. and Demmel, J. and Dongarra, J. and Du Croz,
J. and Greenbaum, A. and Hammarling, S. and McKenney, A. and Sorensen, D.

REFERENCES 493

Lawrence, C. T. and A. L. Tits (2001). A computationally efficient feasible sequential
quadratic programming algorithm. SIAM Journal of Optimization 11, 1092–1118.

L’Ecuyer, P. (1999). Tables of maximally-equidistributed combined LFSR generators. Mathe-
matics of Computation 68, 261–269.

Lehner, K. (1989). Erzeugung von zufallszahlen für zwei exotische verteilungen. Diplomar-
beit, Techn. Universität Graz.

Lenth, R. V. (1987). Algorithm AS 226: Computing noncentral Beta probabilities. Applied
Statistics 36, 241–244.

Lenth, R. V. (1989). Algorithm AS 243: Cumulative distribution function of the non-central t
distribution. Applied Statistics 38, 185–189.

Longley, G. M. (1967). An appraisal of least-squares for the electronic computer from the
point of view of the user. Journal of the American Statistical Association 62, 819–841.

Magnus, J. R. and H. Neudecker (1988). Matrix Differential Calculus with Applications in
Statistics and Econometrics. New York: John Wiley & Sons.

Majunder, K. L. and G. P. Bhattacharjee (1973). Algorithm AS 64. Inverse of the incomplete
beta function ratio. Applied Statistics 22, 411–414.

Mardia, K. V. and P. J. Zemroch (1975). Algorithm AS 86: The von Mises distribution func-
tion. Applied Statistics 24, 268–272.

Marsaglia, G. (1997). A random number generator for C. Posting, Usenet newsgroup
sci.stat.math. 29-Sep-1997.

Marsaglia, G. (2003). Re: good C random number generator. Posting, Usenet newsgroup
sci.lang.c. 13-May-2003.

Martin, R. S., C. Reinsch, and J. H. Wilkinson (1968). Householder’s tridiagonalization of a
symmetric matrix. Numerische Mathematik 11, 181–195.

Martin, R. S. and J. H. Wilkinson (1968a). The implicit ql algorithm. Numerische Mathe-
matik 12, 377–383.

Martin, R. S. and J. H. Wilkinson (1968b). Similarity reduction of a general matrix to Hessen-
berg form. Numerische Mathematik 12, 349–368.

McLeod, I. (1975). Derivation of the theoretical autocovariance function of autoregressive-
moving average time series. Applied Statistics 24, 255–256. Correction in Applied Statis-
tics, 26, 194.

Michael, J. R., W. R. Schucany, and R. W. Haas (1976). Generating random variates using
transformations with multiple roots. American Statistician 30, 88–90.

Nocedal, J. and S. J. Wright (1999). Numerical Optimization. New York: Springer-Verlag.
Olde Daalhuis, A. B. (2010). Hypergeometric function. See Olver, Lozier, Boisvert, and Clark

(2010), Chapter 15.
Olver, F., D. W. Lozier, R. F. Boisvert, and C. W. Clark (2010). NIST Handbook of Mathemat-

ical Functions. New York: Cambridge University Press.
O’Neil, R. (1971). Algorithm AS 47: Function minimization using a simplex procedure. Ap-

plied Statistics 20, 338–345. Improved version in Griffiths, P. and Hill, I. D. (eds) (1985),
Applied Statistics Algorithms. Chichester: Horwood.

Ooura, T. (1998). Special functions – gamma/error functions. mimeo, Kyoto University.
www.kurims.kyoto-u.ac.jp/ ooura.

Park, S. K. and K. W. Miller (1988). Random number generators: Good ones are hard to find.
Communications of the ACM 31, 1192–1201.

Parlett, B. N. and C. Reinsch (1969). Balancing a matrix for calculation of eigenvalues and
eigenvectors. Numerische Mathematik 13, 293–304.

494 REFERENCES

Peters, G. and J. H. Wilkinson (1970). Eigenvectors of real and complex matrices by lr and qr
triangulazations. Numerische Mathematik 16, 181–204.

Petzold, C. (1992). Programming Windows 3.1. Redmond: Microsoft Press.
Piessens, R., E. de Donker-Kapenga, C. W. Überhuber, and D. K. Kahaner (1983). QUAD-

PACK, A Subroutine Package for Automatic Integration. Heidelberg: Springer-Verlag.
Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1988). Numerical Recipes

in C. New York: Cambridge University Press.
Priestley, M. B. (1981). Spectral Analysis and Time Series. London: Academic Press.
Rao, C. R. (1973). Linear Statistical Inference and its Applications, (2nd ed.). New York: John

Wiley & Sons.
Ripley, B. D. (1987). Stochastic Simulation. New York: John Wiley & Sons.
Schnabel, R. B. and P. D. Frank (1985). Tensor methods for nonlinear equations. SIAM Journal

of Numerical Analysis 21, 815–843.
Shea, B. L. (1988). Algorithm AS 239: Chi-squared and incomplete gamma integral. Applied

Statistics 37, 466–473.
Shea, B. L. (1991). Algorithm AS R85: A remark on algorithm AS 91: The percentage points

of the χ2 distribution. Applied Statistics 40, 233–235.
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. London: Chap-

man and Hall.
Smith, W. B. and R. R. Hocking (1972). Algorithm AS 53: Wishart variate generator. Applied

Statistics 21, 341–345.
Stroustrup, B. (1997). The C++ Programming Language (3rd ed.). Reading, MA: Addison

Wesley.
Wichura, M. J. (1988). Algorithm AS 241: The percentage points of the normal distribution.

Applied Statistics 37, 477–484.
Wilkinson, J. H. (1965). The Algebraic Eigenvalue Problem. Oxford: Oxford University Press.
Wirth, N. (1987). Compilerbouw. Schoonhoven, The Netherlands: Academic Service. Dutch

version. Original German version published in 1986 by B.G. Teubner Verlag, Stuttgart.

Subject Index

+.Inf 158
+.Inf 260
-.Inf 158
-.Inf 260
.Inf 260, 261, 424, 425
.NaN 159, 162, 219, 260, 261, 424, 425,

444, 458, 468
.Null 424, 444
.last 424
LATEX 283
try-catch block and throw 452
!= is not equal to 475
! logical negation 468
" " string constant 426
’ ’ character constant 423
’ transpose 466
() function call 462
() parentheses 458
** Kronecker product 469
*= assignment 478
* multiplication 469
++ postfix incrementation 465
++ prefix incrementation 467
+= assignment 478
+ addition 472
, comma expression 479
-- postfix decrementation 465
-- prefix decrementation 467
-> member reference 461
- subtraction 472
.!= is not dot equal to 475
.*= assignment 478
.* dot multiplication 469
... spread an argument 433, 463
... variable length argument list 69, 252
... variable length parameter list 430, 433
./= assignment 478
./ dot division 469
.<= dot less than or equal to 474
.< dot less than 474
.== is dot equal to 475
.>= dot greater than or equal to 474
.> dot greater than 474
.? .: dot conditional expression 477

.&& logical dot-AND 476

.^ dot power 466

.|| logical dot-OR 477

. member reference 461
/* */ comment 422
// comment 422
/= assignment 478
/ division 469
0x. double constant 424
0x hexadecimal constant 423
:: class operator 436, 458
:: scope operator 439, 458
<= less than or equal to 474
<> matrix constant 9, 424
< less than 474
== is equal to 475
= assignment 478
>= greater than or equal to 474
> greater than 474
? : conditional expression 477
[] indexing 464, 465
[] lambda function 458
[] multiple assignment 458
[] part of matrix constant 424
&& logical AND 476
& reference operator 468
{} array constant 426
{} array expression 458
~= assignment 478
~ horizontal concatenation 472
^ power 466
‘ ‘ string constant 426
|= assignment 478
|| logical OR 477
| vertical concatenation 472
2SLS 51

ACF 68
acf() 70
acos() 71
Additive expressions 472
aggregatec() 72
aggregater() 72
any() 73

495

496 SUBJECT INDEX

any() 476
arglist() 74
arglist() 433
Arma package 296
ARMA process 296–299
arma0() 296
armaforc() 297
armagen() 298
armavar() 299
array() 74
Array constants 426
Arrays 25
artest.ox 415
asin() 75
Assignment expressions 478

— to part of an array 478
Objects 479

atan() 75
atan2() 75
Autocorrelation function 70, 268, 275, 302
Autocovariance function 299
Automatic variables 427, 451
Autoregressive process 92
Azimuth 269, 288

Backward substitution 227
Bandwidth 231

— selection 231
bessel() 76
Bessel function 76, 335
Beta

— density 331
— distribution 77, 334
— quantiles 337
— random numbers 339
Complete — integral 77
Incomplete — integral 77

betafunc() 77
BFGS method 308, 309
Big-endian 137
binand() 78
bincomp() 78
Binomial

— density 331
— distribution 334
— quantiles 337
— random numbers 339

binomial() 78
Binomial Coefficient 78
binor() 78
binpop() 78
binxor() 78
Biweight kernel 331
Bootstrap 45, 53
Box plot 275
break 449

Brownian motion
— random numbers 339

Byte ordering 163, 215

cabs() 80
Canonical loop 32, 453
Canonical for and foreach loops 453
catch 452
Catching exceptions 452
Cauchy

— density 331
— distribution 334
— quantiles 337
— random numbers 339

cdiv() 80
ceil() 83
Censored random variates 45
cerf() 80
cexp() 80
Character constants 423
chdir() 83
Chi

χ2-density 113
χ2-distribution 198, 242
χ2-distribution (non-central) 198
χ2-quantiles 201
χ2-random numbers 339

choleski() 84
Choleski decomposition 84, 96, 97, 157,

177, 226, 406, 488
class 435
Classes 435–441

Database 349
Modelbase 374
PcFiml 391
PcFimlDgp 397
PcNaiveDgp 404
RanMC 406
RanPcNaive 408
Sample 349
Simulator 415

classname() 85
clog() 80
clone() 85
clone() 43
Closed statement list 453
CloseDrawWindow() 267
CMaxControl() 305
cmul() 80
Cointegration 68
columns() 86
Comma expression 479
Command-line

— arguments 13
Comment 422
Companion matrix 192

SUBJECT INDEX 497

Compilation 28
Complex number 80
Concatenation expressions 472
Conditional compilation 481
Conditional expression 477
const 429, 430
constant() 86
Constant expressions 479
Constants 423
Constructor functions 437
continue 449
Convergence 308, 309, 313
Convolution 191
correlation() 87
Correlation matrix 46, 87
Correlogram 275
cos() 87
cosh() 87
countc() 88
countr() 89
Cross-section data 349
csqrt() 80
Csv 162, 164, 215, 217
Cubic spline 231

— weight matrix 68
cumprod() 90
cumsum() 90
cumulate() 92

Daily data 350
Data

— loading 162, 365–366
— saving 215, 369

Database class 349–373
database.oxh 349
Database::Append() 357
Database::Create() 357
Database::Database() 358
Database::DeSelect() 358
Database::DeSelectByName() 358
Database::DeSelectByIndex() 358
Database::Deterministic() 358
Database::Empty() 359
Database::FindSelection() 359
Database::ForceSelSample() 359
Database::ForceSelSampleByIndex()

359
Database::GetAll() 360
Database::GetAllNames() 360
Database::GetDateByIndex() 360
Database::GetDates() 360
Database::GetDbName() 360
Database::GetGroup() 361
Database::GetGroupNames() 361
Database::GetGroupLag() 361
Database::GetGroupLagNames() 361

Database::GetIndexByDate() 362
Database::GetIndexByDates() 362
Database::GetMaxGroupLag() 362
Database::GetMaxSelLag() 362
Database::GetObsLabel() 362
Database::GetSample() 362
Database::GetSelEnd() 363
Database::GetSelInfo() 363
Database::GetSelSample() 363
Database::GetSelSampleMode() 363
Database::GetSelStart() 363
Database::GetVar() 364
Database::GetVarByIndex() 364
Database::GetVarChoices() 364
Database::GetVarChoicesByIndex()

364
Database::GetVarCount() 364
Database::GetVarIndex() 364
Database::GetVarNameByIndex() 364
Database::GetVarType() 364
Database::Grow() 365
Database::Info() 365
Database::IsDated() 365
Database::IsEmpty() 365
Database::Load() 366
Database::Recode() 367
Database::Remove() 367
Database::RemoveObsIf() 367
Database::Rename() 368
Database::Renew() 368
Database::RenewBlock() 368
Database::Save() 369
Database::Select() 369, 388
Database::SelectByIndex() 369, 388
Database::SetDates() 370
Database::SetDbName() 370
Database::SetSelDates() 370
Database::SetSelInfo() 370
Database::SetSelSampleByDates()

371
Database::SetSelSampleByIndex()

371
Database::SetSelSampleMode() 371
Database::SetVar() 371
Database::SetVarChoices() 372
Database::SetVarChoicesByIndex()

372
Database::SetVarType() 372
Database::SetVarTypeByIndex() 372
Database::Shrink() 365
Database::SortBy() 372
Database::Tabulate() 373
date() 93
dawson() 93
dayofcalendar() 94
dayofeaster() 94

498 SUBJECT INDEX

dayofmonth() 94
dayofweek() 94
DB CHOICE 352
DB DATE 350
dbchoice.ox 352
dbclass.ox 349
dbdates.ox 351
Debugger 12
decl 9, 15, 429, 451
Declaration statements 451
decldl() 96
decldlband() 97
declu() 99
decmgs() 101
Deconvolution 188
decqr() 102
decqrmul() 104
decqrupdate() 106
decschur() 108
decschurgen() 108
decsvd() 111
Default values for function arguments 433
#define 481, 482
delete 468
deletec() 112
deleteifc() 112
deleteifr() 112
deleter() 112
densbeta() 331
densbinomial() 331
denscauchy() 331
denschi() 113
densexp() 331
densextremevalue() 331
densf() 113
densgamma() 331
densgeometric() 331
densgh() 331
densgig() 331
densinvgaussian() 331
Density estimation 68, 277
denskernel() 331
denslogarithmic() 331
denslogistic() 331
denslogn() 331
densmises() 331
densn() 113
densnegbin() 331
denspareto() 331
denspoisson() 331
denst() 113
densweibull() 331
Derivative, Numerical 321
Derived classes 439
Destructor functions 437
determinant() 114

dfft() 115
diag() 116
diagcat() 116
diagonal() 117
diagonalize() 118
diff() 119
diff0() 119
diffpow() 300
Digamma function 189
Dirichlet

— random numbers 339
Discrete Fourier transform 115
discretize() 120
Distance 269, 288
Division 469
do while 19, 447
double() 121
double() 463
Double constants 424
dowjones.xls 350
Draw() 267
draw1.ox 264
draw5.ox 276
draw10.ox 284
draw11.ox 286
draw2.ox 264
draw3.ox 292
draw4.ox 271
draw6.ox 281
draw7.ox 288
draw8.ox 289
DrawAcf() 267
DrawAdjust() 268
DrawAxis() 273
drawaxis log10.ox 273
DrawAxisAuto() 273
DrawBoxPlot() 275
DrawCorrelogram() 275
DrawDensity() 277
DrawHistogram() 278
DrawLegend() 278
DrawLine() 279
DrawMatrix() 279
DrawPLine() 280
DrawPSymbol() 280
DrawPText() 280
DrawQQ() 280
DrawSpectrum() 281
DrawSymbol() 282
DrawT() 283
DrawText() 283
DrawTitle() 283
DrawTMatrix() 284
DrawX() 286
DrawXMatrix() 286
DrawXYZ() 288

SUBJECT INDEX 499

DrawZ() 290
dropc() 122
dropr() 122
Durbin’s method 302
Dynamic analysis 68
Dynamic forecasts 301
Dynamic linking 14, 431

e = exp(1) 260
eigen() 123
eigensym() 123
eigensymgen() 125
Eigenvalue 108, 123, 192, 488

— generalized 108
Eigenvector 123, 488
Elevation 269, 288
#else 481
else 22, 444, 475
Empty array 426, 469
Empty matrix 425, 444, 458, 468, 469
Encapsulated PostScript 290
#endif 481
enum 428
Enumerations 428
Epanechnikov kernel 331
eprint() 126
Equality expressions 475
Equilibrium correction form 408
erf() 126
Error function 80, 126
Escape sequence 423
Euler’s constant 260
Excel 162, 164, 215, 217
exclusion() 127
exit() 127
exp() 128
expint() 128
Explicit type conversion 463
Exponential

— density 331
— distribution 334
— quantiles 337
— random numbers 339

Expressions 456
Extensions 11
extern 429, 430
External declarations 428
External variable declarations 429
Extreme Value

— density 331
— distribution 334
— quantiles 337

F
F-density 113
F-distribution 198, 242

F-distribution (non-central) 198
F-quantiles 201
F-random numbers 339

fabs() 129
Factorial 46, 129, 147, 167
factorial() 129
FALSE 260
fclose() 130
fcopy() 130
feof() 130
fexists() 130
fflush() 130
fft() 131
fft1d() 131
File inclusion 479, 480
File names in Ox code 11
find() 132
findsample() 135
FindZero() 307
Finite difference approximation 321
floor() 136
fmod() 136
Folder names in Ox code 479
fopen() 137
for 19, 447
foreach 20
Forecasting 297, 301
format() 138
Forward substitution 227
Fourier transform 68, 115, 131
fprint() 139
fprintln() 139
fread() 140
fremove() 141
fscan() 141
fseek() 145
fsize() 146
ftime() 146
Function arguments

Default values 433, 435, 436
Spread 463
Variable length 433

Function calls 462
Function declarations 430
Function definitions 431
Function parameters 431
Function return value 18, 432
Functions 17, 430–434
fwrite() 146

Gamma
— density 331
— distribution 334, 335
— function 147, 167
— quantiles 337
— random numbers 339

500 SUBJECT INDEX

Incomplete — function 148, 335
gammafact() 147
gammafunc() 148
Gaussian kernel 331
Generalized eigenvalues 125
Generalized Hyperbolic

— density 331
— distribution 333
— random numbers 339

Generalized inverse 470, 471
Generalized Inverse Gaussion

— density 331
— distribution 333
— random numbers 339

Geometric
— density 331
— distribution 334
— quantiles 337
— random numbers 339

getcwd() 149
getenv() 149
getfiles() 149
getfolders() 149
GetMaxControl() 306
GetMaxControlEps() 306
GetVarTypeByIndex() 364
goto 449
Graphics 11, 262–294

Colour model for PDF saving 270, 292
Colour model for PostScript saving 270,

292
Date axis 284, 286

HAC 68
Hadamard product 485
headc() 150
Help 11
Hessian matrix 307, 312, 489
Hilbert matrix 51
Histogram 277, 278
Hodrick–Prescott filter 68, 232
Human-readable data file 162, 215, 369
Hungarian notation 29
hyper 2F1() 151
Hypergeometric

— density 331
— distribution 334
— quantiles 337
— random numbers 339

Identity matrix 250
idiv() 152
idiv() 470
if 22, 444, 475
#ifdef 481
#ifndef 481

imod() 152
imod() 470
#import 28, 348, 480
Import of modules 480
#include 480
Indexing 9, 16, 464, 465
Infinity 158, 260, 261, 424, 425
Inheritance 440
inline 434, 436
Inline function definitions 434
insertc() 152
insertr() 152
Installation 5
int() 153
int() 463
Integer constants 423
Integration 344
intersection() 153
Inverse Gaussian

— density 331
— distribution 334
— quantiles 337
— random numbers 339

invert() 154
invert() 470
inverteps() 154
invertgen() 155
invertsym() 157
iotest13.ox 164
iotest2.ox 143
iotest3.ox 218
iotest5.ox 235
isarray() 157
isclass() 157
isdotfeq() 158
isdotinf() 158
isdotmissing() 159
isdotnan() 159
isdouble() 157
isfeq() 158
isfile() 157
isfunction() 157
isint() 157
ismatrix() 157
ismember() 157
isstring() 157
ismissing() 159
isnan() 159
Iteration statements 447

Jacobian matrix 324, 489
jacobian.ox 324
Jump statements 449

Kernel
— densities 331

SUBJECT INDEX 501

— density estimate 277
Keywords 422
Kronecker product 469, 486
Kurtosis 47

Labels 444
lag() 160
lag0() 160
Lambda function 458, 460
Last element 424
Leads 160
Leap year 350
Levinson algorithm 228
limits() 161
Line search 309
Linking

— using #import 28, 480
Linux 10
Little-endian 137
Loading data 162, 164, 365–366
loadmat() 162
loadsheet() 164
log() 166
Log file 130, 137
log10() 166
Logarithmic

— density 331
— distribution 334
— quantiles 337
— random numbers 339

logdet() 166
loggamma() 167
Logical dot-AND expressions 476
Logical dot-OR expressions 477
Logical negation 468
Logical-AND expressions 476
Logical-OR expressions 477
Logistic

— density 331
— distribution 334
— quantiles 337
— random numbers 339

LogNormal
— random numbers 339

Lognormal
— density 331
— distribution 334
— quantiles 337

Longley data set 49, 51
Loops 19, 447–449
lower() 168
LU decomposition 99, 154, 166, 227, 488
Lvalue 427, 456

Machine precision 260
macOS 10

main() 428
main 9
Matrix

— algebra 485
— differentiation 488
— inverse 486
Determinant 486
Diagonalization 487
Idempotent — 487
Rank 486
Symmetric — 486
Trace 486
Transpose 486
Vectorization 487

matrix() 169
matrix() 463
Matrix constants 9, 424
max() 169
MaxBFGS() 307
maxbfgs.ox 309
maxboth.ox 316
maxc() 170
maxcindex() 170
MaxControl() 306
MaxControlEps() 306
MaxConvergenceMsg() 306
Maximization

Control 305
Functions 307
Package 305

maxnewt.ox 313
MaxNewton() 312
maxr() 170
MaxScalarBrent() 315
MaxSimplex() 316
MaxSQP() 319
MaxSQPF() 319
mbclass.ox 374
MCSD 417
MCSE 417
meanc() 171
meanr() 171
Median 46, 202
Member function definitions 436
Member reference 461
Member scope 438
min() 171
minc() 171
mincindex() 171
minr() 171
Missing value 112, 159, 162, 219, 232, 261,

349, 424, 425, 444, 458, 468
Mode 46
Modelbase class 374–390
Modelbase::ClearEstimation() 378
Modelbase::ClearModel() 378

502 SUBJECT INDEX

Modelbase::Covar() 378
Modelbase::DbDrawTMatrix() 379
Modelbase::DoEstimation() 379
Modelbase::Estimate() 379
Modelbase::FindGroup() 380
Modelbase::FindMethod() 380
Modelbase::FixPar() 380
Modelbase::FreePar() 381
Modelbase::GetParNames() 383
Modelbase::GetcDfLoss() 381
Modelbase::GetCovar() 381
Modelbase::GetCovarRobust() 381
Modelbase::GetcT() 381
Modelbase::GetcX() 381
Modelbase::GetcY() 381
Modelbase::GetcYlag() 381
Modelbase::GetForecastData() 382
Modelbase::GetFreePar() 382
Modelbase::GetFreeParCount() 382
Modelbase::GetFreeParNames() 382
Modelbase::GetGroupLabels() 382
Modelbase::GetLogLik() 382
Modelbase::GetMethod() 382
Modelbase::GetMethodLabel() 382
Modelbase::GetMethodLabels() 382
Modelbase::GetModelLabel() 383
Modelbase::GetModelStatus() 383
Modelbase::GetPackageName() 383
Modelbase::GetPackageVersion() 383
Modelbase::GetPar() 383
Modelbase::GetParCount() 383
Modelbase::GetParStatus() 384
Modelbase::GetParTypes() 384
Modelbase::GetPrint() 384
Modelbase::GetResiduals() 384
Modelbase::GetResult() 384
Modelbase::GetResVar() 385
Modelbase::GetStdErr() 385
Modelbase::GetStdErrRobust() 385
Modelbase::GetX() 385
Modelbase::GetY() 385
Modelbase::Grow() 385
Modelbase::InitData() 385
Modelbase::InitPar() 386
Modelbase::IsUnivariate() 386
Modelbase::MapParToFree() 386
Modelbase::Modelbase() 386
Modelbase::Output() 386
Modelbase::OutputHeader() 386
Modelbase::OutputLogLik() 387
Modelbase::OutputMax() 387
Modelbase::OutputPar() 387
Modelbase::PrintTestVal() 387
Modelbase::ResetFixedPar() 387
Modelbase::SetForecasts() 388
Modelbase::SetFreePar() 388

Modelbase::SetMethod() 388
Modelbase::SetModelStatus() 389
Modelbase::SetPar() 389
Modelbase::SetParCount() 389
Modelbase::SetPrint() 389
Modelbase::SetRecursive() 389
Modelbase::SetResult() 389
Modelbase::SetStartPar() 390
Modelbase::ShowBanner() 390
Modelbase::TestRestrictions() 390
modelforc() 301
moments() 172
Monte Carlo 415
Moore–Penrose conditions 472
Multicollinearity 51
Multinomial

— random numbers 339
Multiple assignment 432
Multiple assignment and multiple returns

459
Multiple files 26
Multiple returns 432, 459
Multiplicative expressions 469
Multivariate normal

— random numbers 46, 407
myfirst.ox 8
myfunc.ox 26
myfunc.oxh 26, 27
mymaina.ox 27
mymainc.ox 27

Namespace 442
nans() 174
Negative Binomial

— density 331
— distribution 334
— quantiles 337

Negative binomial
— random numbers 339

new 468
Newline character 423
Newton method 312
nonlinear equations 325
Nonlinear Programming 319
norm() 175
Normal

— density 113
— distribution 198, 242
— quantiles 46, 201
— random numbers 46, 206, 407
— random order statistics 342
Bivariate — distribution 334
Imhof procedure 68
Multivariate — distribution 334

Normality test 68
Null constants 424

SUBJECT INDEX 503

Null space 488
nullspace() 176
Num1Derivative() 321
Num2Derivative() 321
numder.ox 323
Numerical

— Jacobian 324
— accuracy 49–53, 204
— derivative 321
— integration 344
— optimization 51, 307, 312, 315, 316,

319
— problems 309
— variance 46

NumJacobian() 324

Object-oriented programming 29, 435
ols2c() 177
ols2r() 177
olsc() 177
olsr() 177
ones() 179
Operators 24
Optimizing Ox 31, 437, 473
Order statistics 342
Orthogonal

— complement 176, 487, 488
— matrix 487

OS X 10
outer() 179
Ox Console 10
.ox files 9
Ox Professional 10
OX9PATH environment variable 7, 11, 480
OX8PATH environment variable 28
oxdraw.oxh 263
OxEdit 12
oxfilename() 180
oxfloat.oxh 260
.oxh files 9
OxMetrics 10, 264, 267, 291, 294

— data file 162, 215, 369
— graphics file 290

OxMPI 38
.oxo files 12, 28, 480
OxPack 374
oxprintlevel() 181
OxRun 264
oxrunerror() 182
oxstd.oxh 9, 69, 260
oxversion() 182
oxwarning() 182

pacf() 302
Packages 295

Arma 296

Maximization 305
Probability 331
QuadPack 344

Parallel programming 32–43, 453
Parallel for and foreach loops 454
parallel mc.ox 39
parallel mc oxmpi.ox 40
parallel mcsim.ox 42
Pareto

— density 331
— distribution 334
— quantiles 337
— random numbers 339

Partial autocorrelation function 268, 302
Parzen window 186
Path names in Ox code 11, 479
pcf1.ox 391
pcf3.ox 393
pcfdgp.ox 397
PcFiml class 391–396
pcfiml.h 391
pcfiml.ox 391
PcFimlDgp class 397–403
pcfimldgp.h 397
PcFimlDgp::Asymp() 399
PcFimlDgp::Create() 399
PcFimlDgp::DiscardZ() 399
PcFimlDgp::GenerateTo() 399
PcFimlDgp::GenerateU() 400
PcFimlDgp::GenerateV() 400
PcFimlDgp::GenerateU t() 400
PcFimlDgp::GenerateV t() 400
PcFimlDgp::GenerateY() 400
PcFimlDgp::GenerateY t() 400
PcFimlDgp::GenerateZ() 400
PcFimlDgp::GenerateZ t() 400
PcFimlDgp::GetU() 401
PcFimlDgp::GetV() 401
PcFimlDgp::GetY() 401
PcFimlDgp::GetZ() 401
PcFimlDgp::PcFimlDgp() 401
PcFimlDgp::Prepare() 401
PcFimlDgp::Print() 401
PcFimlDgp::SetDistribution() 401
PcFimlDgp::SetFixedZ() 401
PcFimlDgp::SetInit() 402
PcFimlDgp::SetU() 402
PcFimlDgp::SetV() 402
PcFimlDgp::SetY() 402
PcFimlDgp::SetYParameter() 402
PcFimlDgp::SetZ() 402
PcFimlDgp::SetZParameter() 402
PcFimlDgp::UseObsLoop() 403
PcGive 7 data file 162, 215
PcNaiveDgp class 404–405
PcNaiveDgp::DiscardZ() 404

504 SUBJECT INDEX

PcNaiveDgp::Generate() 404
PcNaiveDgp::GenerateBreakTo() 404
PcNaiveDgp::GenerateTo() 404
PcNaiveDgp::GetU() 405
PcNaiveDgp::GetY() 405
PcNaiveDgp::GetZ() 405
PcNaiveDgp::PcNaiveDgp() 405
pcndgp.ox 408
PDF 268, 290

Colour model 270, 292
peakc() 184
Periodogram 185
periodogram() 185
periodogram() 281
Persymmetric 210
pi = 3.1415 . . . 260
PNG 290
Poisson

— density 331
— distribution 334
— quantiles 337
— random numbers 339

Poisson process 46, 47
— random numbers 339

polydiv() 188
polyeval() 188
polygamma() 189
polymake() 190
polymul() 191
Polynomial

Division of —s 188
Evaluation of — 188
Multiplication of —s 191
Roots of — 192

polyroots() 192
Postfix expressions 461
Postfix incrementation 465
PostScript 268, 290

Colour model 270, 292
pow() 193
Power expressions 466
#pragma 482
Pragmas 482
Predefined constants 260, 481
Prefix incrementation 467
Preprocessing 479
Primary expressions 458
print() 193
println() 193
Probability package 331
probbeta() 334
probbinomial() 334
probbvn() 334
probcauchy() 334
probchi() 198
probexp() 334

probextremevalue() 334
probf() 198
probgamma() 334
probgeometric() 334
probhypergeometric() 334
probinvgaussian() 334
problogarithmic() 334
problogistic() 334
problogn() 334
probmises() 334
probmvn() 334
probn() 198
probnegbin() 334
probpareto() 334
probpoisson() 334
probt() 198
probweibull() 334
prodc() 200
prodr() 200
protected 435, 438
public 435, 438

QQ plot 280
QR decomposition 101, 102, 104, 106, 177
QuadPack 344
quadpack.h 344
quadpack.ox 346
Quadratic programming 328
Qualifier 429
quanbeta() 337
quanbinomial() 337
quancauchy() 337
quanchi() 201
quanexp() 337
quanextremevalue() 337
quanf() 201
quangamma() 337
quangeometric() 337
quanhypergeometric() 337
quaninvgaussian() 337
quanlogarithmic() 337
quanlogistic() 337
quanlogn() 337
quanmises() 337
quann() 201
quannegbin() 337
quanpareto() 337
quanpoisson() 337
quant() 201
Quantile 202

— of distribution 68
quantilec() 202
quantiler() 202
quanweibull() 337
Quasi-Newton method 308

SUBJECT INDEX 505

Race condition 34
ranbeta() 339
ranbinomial() 339
ranbrownianmotion() 339
rancauchy() 339
ranchi() 339
randirichlet() 339
Random number generators 206, 209, 339

Lattice structure 342
Random sample

– with replacement 47
– without replacement 47

ranexp() 339
ranextremevalue() 339
ranf() 339
rangamma() 339
range() 204
rangeometric() 339
rangh() 339
rangig() 339
ranhypergeometric() 339
ranindex() 339
raninvgaussian() 339
rank() 205
Ranking 230
ranlogarithmic() 339
ranlogistic() 339
ranlogn() 339
ranloopseed() 205
ranloopseed 38
RanMC class 406–407
RanMC::CheckDist() 406
RanMC::Choleski() 406
RanMC::RanDist() 406
RanMC::RanDist1() 407
RanMC::WriteDist() 407
ranmises() 339
ranmultinomial() 339
rann() 206
rannegbin() 339
ranpareto() 339
RanPcNaive class 408–414
ranpcnaive.oxh 404, 408
RanPcNaive::Asymp() 410
RanPcNaive::GenerateBreakTo() 410
RanPcNaive::GenerateTo() 410
RanPcNaive::GetFixedZValue() 410
RanPcNaive::HasFixedZ() 410
RanPcNaive::Print() 411
RanPcNaive::RanPcNaive() 411
RanPcNaive::SetDistribution() 411
RanPcNaive::SetFixedZ() 412
RanPcNaive::SetFixedZValue() 412
RanPcNaive::SetInit() 412
RanPcNaive::SetNewFixedZValue()

413

RanPcNaive::SetUParameter() 413
RanPcNaive::SetYParameter() 413
RanPcNaive::SetYParameterEcm() 413
RanPcNaive::SetZCustom() 414
RanPcNaive::SetZParameter() 414
RanPcNaive::StoreInDatabase() 414
ranpoisson() 339
ranpoissonprocess() 339
ranseed() 207
ranshuffle() 339
ranstable() 339
ransubsample() 339
rant() 339
ranu() 209
ranuorder() 339
ranweibull() 339
ranwishart() 339
Raw string constants 426
Re-entrant function 36
Rectangular kernel 331
Reduction 34
Reference 18
Reference operator 468
reflect() 210
Relational expressions 474
replace() 211
reshape() 213
return 18, 432, 449, 459
Returning a value 432
reversec() 213
reverser() 213
RMSE 417
round() 214
rows() 214
Run-time

errors 182
warnings 182

Running Ox 7, 10, 11

Sample class 349–373
Sample::GetFrequency() 360
Sample::GetIndex() 361
Sample::GetPeriod1() 362
Sample::GetPeriod2() 362
Sample::GetSize() 363
Sample::GetYear1() 365
Sample::GetYear2() 365
Sample::ObsPeriod() 366
Sample::ObsYear() 367
Sample::Resample() 368
Sampling

— with replacement 342
— without replacement 339, 342

SaveDrawWindow() 290
savemat() 215
savesheet() 217

506 SUBJECT INDEX

Saving data 215, 217, 369
scan() 218
Schur decomposition 108
Scope 15, 427, 429, 438, 452
Search path 480
selectc() 219
selectifc() 219
selectifr() 219
Selection statements 444
selectr() 219
selectrc() 219
Sequence 47, 204
serial 35, 429
setbounds() 221
setdiagonal() 222
SetDraw() 291
SetDrawWindow() 294
setlower() 222
SetTextWindow() 294
setupper() 222
shape() 224
ShowDrawWindow() 294
simnor.ox 415
Simplex method 316
simtest.ox 415
Simulator class 41, 415–420
simulator.oxh 415
Simulator::Generate() 417
Simulator::Plot() 418
Simulator::Prepare() 418
Simulator::SaveIn7() 418
Simulator::SaveRecIn7() 418
Simulator::SetCoefNames() 419
Simulator::SetPlotRep() 419
Simulator::SetRecursive() 419
Simulator::SetStore() 419
Simulator::SetTestNames() 419
Simulator::SetTwoSided() 419
Simulator::Simulate() 419
Simulator::Simulator() 420
sin() 224
Singular value decomposition 111, 176, 471,

488
sinh() 224
sizec() 225
sizeof() 225
sizer() 225
sizerc() 225
Skewness 47
solveldl() 226
solveldlband() 226
solvelu() 227
SolveNLE() 325
solvenle1.ox 326
SolveQP() 328
solveqp1.ox 329

solvetoeplitz() 228
sortbyc() 229
sortbyr() 229
sortc() 230
sortcindex() 230
Sorting 229, 230
sortr() 230
Specifier 429
Spectral density 185, 281
spline() 231
Spread operator 463
Spreadsheet data file 162, 164, 215, 217
sprint() 233
sprintbuffer() 233
sqr() 234
sqrt() 234
sscan() 235
Stable

— random numbers 339
standardize() 237
Stata data file 162, 215
Statements 443
static 429, 435, 439
Static members 439
Stationarity 299
Step length 308, 326
Storage class specifiers 429
strfind() 238
strfindr() 238
strifind() 238
strifindr() 238
string() 237
string() 463
String comparison 158, 475
String constants 426
strlwr() 239
strtrim() 239
struct 435, 438
strupr() 239
Style 29
submat() 239
Subsample

random — without replacement 339
sumc() 240
sumr() 240
sumsqrc() 240
sumsqrr() 240
SVG 290
switch 445
Switch statements 445
switch single 445
systemcall() 240

t
t-density 113
t-distribution 198, 242

SUBJECT INDEX 507

t-distribution (non-central) 198
t-quantiles 201
t-random numbers 339

tailc() 241
tailchi() 242
tailf() 242
tailn() 242
tailt() 242
tan() 242
tanh() 242
Test

— matrix rank 68
ARCH — 68
Normality — 68
Portmanteau — 68

Text in graphs
LATEX-style 283
Rotate — 284

thinc() 243
thinr() 243
this 438
throw 452
time() 244
Time-varying coefficients 90
timeofday() 244
timer() 245
timespan() 245
timestr() 246
timing() 246
today() 246
toeplitz() 248
Toeplitz matrix 228, 248
Tokens 422
trace() 248
Transpose 466
Triangular kernel 331
Triangular system 227
Tridiagonal matrix 46
Trigamma function 189
Trimming 47
TRUE 260
trunc() 249
Truncated random variates 47
truncf() 249
try 452
Twist 269, 288
Two-sided critical values 48
Type conversion 427, 463
Type qualifiers 429
Typecast 427, 463
Types 15, 427

Unary expressions 467
Unary minus 467, 468
Unary plus 468
#undef 481

Uniform
— random numbers 209
— random order statistics 339

union() 250
unique() 250
unit() 250
Unsorting 48
unvech() 251
upper() 251

va arglist() 252
va arglist() 433
varc() 253
Variable length argument list 69, 252
Variable length parameter list 433
Variables 15, 427
variance() 253
varr() 253
vec() 254
vech() 254
vecindex() 255
vecr() 257
vecrindex() 258
Vector autoregressive process (VAR) 92
virtual 435, 440
Virtual functions 440
von Mises

— density 331
— distribution 334
— quantiles 337
— random numbers 339

Warnings 13, 182
Weekly data 350
Weibull

— density 331
— distribution 334
— quantiles 337
— random numbers 339

while 19, 447
Windows 10
Wishart

— random numbers 339

Yule-Walker equations 303

zeros() 259
Zip file 137

	Front matter
	Contents
	List of Figures
	List of Program Listings
	Preface
	I Introduction to Ox
	1 Summary information
	1.1 What is Ox?
	1.2 Availability
	1.3 Ox version
	1.4 Learning Ox
	1.5 Ox platforms
	1.6 Ox supported data formats
	1.7 Extending Ox
	1.8 World Wide Web
	1.9 Online documentation
	1.10 Ox-users discussion list
	1.11 Installation
	1.12 Completing the basic installation
	1.13 Directory structure
	1.14 OX9PATH

	2 Getting started with Ox
	2.1 Introduction
	2.2 A first Ox program
	2.3 Running the first Ox program
	2.3.1 Ox Professional under Windows
	2.3.2 Ox Professional and Ox Console under Windows
	2.3.3 Ox Professional under Linux and macOS
	2.3.4 Ox Professional and Ox Console under Linux and macOS

	2.4 Online help
	2.5 Using file names in Ox
	2.6 Ox file extensions
	2.7 More on running Ox programs
	2.7.1 Running programs with graphics
	2.7.2 Compilation into .oxo file
	2.7.3 The debugger
	2.7.4 OxEdit

	2.8 Command line arguments
	2.8.1 General switches
	2.8.2 Optimization switches
	2.8.3 Run-time switches

	2.9 Extending Ox

	3 Introduction to the Ox language
	3.1 Variables, types and scope
	3.2 Indexing matrices
	3.3 Functions and function arguments
	3.4 The for and while loops
	3.5 The foreach loop
	3.6 The if statement
	3.7 Operations and matrix programming
	3.8 Arrays
	3.9 Multiple files: using #include and #import
	3.9.1 Including the code into the main file
	3.9.2 Importing the code into the main file
	3.9.3 Importing Ox packages
	3.9.4 Separate compilation

	3.10 Object-oriented programming
	3.11 Style and Hungarian notation
	3.12 Optimizing for speed

	4 Parallel programming in Ox
	4.1 Introduction
	4.2 Canonical for and foreach loops
	4.3 Parallel for and foreach loops
	4.3.1 Local variables
	4.3.2 Global variables
	4.3.3 Member variables of objects

	4.4 Serial variables
	4.5 Serial functions
	4.6 Serial sections
	4.7 Parallel if
	4.8 Random number generation
	4.9 Monte Carlo example
	4.10 Monte Carlo example using OxMPI
	4.11 Monte Carlo example using the Simulator class

	5 How to …
	6 Numerical accuracy

	II Function and Language Reference
	7 Function summary
	8 Function reference
	acf
	acos
	aggregatec
	aggregater
	any
	arglist
	array
	asin
	atan
	atan2
	bessel
	betafunc
	binand
	bincomp
	binor
	binpop
	binxor
	binomial
	cabs
	cdiv
	cerf
	cexp
	clog
	cmul
	csqrt
	ceil
	chdir
	choleski
	classname
	clone
	columns
	constant
	correlation
	cos
	cosh
	countc
	countr
	cumprod
	cumsum
	cumulate
	date
	dawson
	dayofcalendar
	dayofeaster
	dayofmonth
	dayofweek
	decldl
	decldlband
	declu
	decmgs
	decqr
	decqrmul
	decqrupdate
	decschur
	decschurgen
	decsvd
	deletec
	deleter
	deleteifc
	deleteifr
	denschi
	densf
	densn
	denst
	determinant
	dfft
	diag
	diagcat
	diagonal
	diagonalize
	diff
	diff0
	discretize
	double
	dropc
	dropr
	eigen
	eigensym
	eigensymgen
	eprint
	erf
	exclusion
	exit
	exp
	expint
	fabs
	factorial
	fclose
	fcopy
	feof
	fflush
	fexists
	fft
	fft1d
	find
	findsample
	floor
	fmod
	fopen
	format
	fprint
	fprintln
	fread
	fremove
	fscan
	fseek
	fsize
	ftime
	fwrite
	gammafact
	gammafunc
	getcwd
	getenv
	getfiles
	getfolders
	headc
	hyper_2F1
	idiv
	imod
	insertc
	insertr
	int
	intersection
	invert
	inverteps
	invertgen
	invertsym
	isarray
	isclass
	isdouble
	isfile
	isfunction
	isint
	ismatrix
	ismember
	isstring
	isdotfeq
	isfeq
	isdotinf
	isdotmissing
	isdotnan
	ismissing
	isnan
	lag
	lag0
	limits
	loadmat
	loadsheet
	log
	log10
	logdet
	loggamma
	lower
	matrix
	max
	maxc
	maxcindex
	maxr
	meanc
	meanr
	min
	minc
	mincindex
	minr
	moments
	nans
	norm
	nullspace
	ols2c
	ols2r
	olsc
	olsr
	ones
	outer
	oxfilename
	oxprintlevel
	oxrunerror
	oxversion
	oxwarning
	peakc
	periodogram
	polydiv
	polyeval
	polygamma
	polymake
	polymul
	polyroots
	pow
	print
	println
	probchi
	probf
	probn
	probt
	prodc
	prodr
	quanchi
	quanf
	quann
	quant
	quantilec
	quantiler
	range
	ranloopseed
	rank
	rann
	ranseed
	ranu
	reflect
	replace
	reshape
	reversec
	reverser
	round
	rows
	savemat
	savesheet
	scan
	selectc
	selectr
	selectifc
	selectifr
	selectrc
	setbounds
	setdiagonal
	setlower
	setupper
	shape
	sin
	sinh
	sizec
	sizeof
	sizer
	sizerc
	solveldl
	solveldlband
	solvelu
	solvetoeplitz
	sortbyc
	sortbyr
	sortc
	sortcindex
	sortr
	spline
	sprint
	sprintbuffer
	sqr
	sqrt
	sscan
	standardize
	string
	strfind
	strfindr
	strifind
	strifindr
	strlwr
	strtrim
	strupr
	submat
	sumc
	sumr
	sumsqrc
	sumsqrr
	systemcall
	tailc
	tailchi
	tailf
	tailn
	tailt
	tan
	tanh
	thinc
	thinr
	time
	timeofday
	timer
	timespan
	timestr
	timing
	today
	toeplitz
	trace
	trunc
	truncf
	union
	unique
	unit
	unvech
	upper
	va_arglist
	varc
	varr
	variance
	vec
	vech
	vecindex
	vecr
	vecrindex
	zeros

	9 Predefined Constants
	9.1 Missing values (NaN)
	9.2 Infinity

	10 Graphics function reference
	10.1 Introduction
	10.2 Symbol and line types
	10.3 Function reference
	CloseDrawWindow
	Draw
	DrawAcf
	DrawAdjust
	DrawAxis
	DrawAxisAuto
	DrawBoxPlot
	DrawCorrelogram
	DrawDensity
	DrawHistogram
	DrawLegend
	DrawLine
	DrawMatrix
	DrawPLine
	DrawPSymbol
	DrawPText
	DrawQQ
	DrawSpectrum
	DrawSymbol
	DrawT
	DrawText
	DrawTitle
	DrawTMatrix
	DrawX
	DrawXMatrix
	DrawXYZ
	DrawZ
	SaveDrawWindow
	SetDraw
	SetDrawWindow
	SetTextWindow
	ShowDrawWindow

	11 Packages
	11.1 Arma package
	arma0
	armaforc
	armagen
	armavar
	diffpow
	modelforc
	pacf

	11.2 Maximization package
	11.2.1 Maximization control
	CMaxControl
	GetMaxControl
	GetMaxControlEps
	MaxControl
	MaxControlEps
	MaxConvergenceMsg
	11.2.2 Maximization functions
	FindZero
	MaxBFGS
	MaxNewton
	MaxScalarBrent
	MaxSimplex
	MaxSQP
	MaxSQPF
	Num1Derivative
	Num2Derivative
	NumJacobian
	SolveNLE
	SolveQP

	11.3 Probability package
	densbeta
	densbinomial
	denscauchy
	densexp
	densextremevalue
	densgamma
	densgeometric
	densgh
	densgig
	densinvgaussian
	denskernel
	denslogarithmic
	denslogistic
	denslogn
	densmises
	densnegbin
	denspareto
	denspoisson
	denspoisson
	densweibull
	probbeta
	probbinomial
	probbvn
	probcauchy
	probexp
	probextremevalue
	probgamma
	probgeometric
	probhypergeometric
	probinvgaussian
	problogarithmic
	problogistic
	problogn
	probmises
	probmvn
	probnegbin
	probpareto
	probpoisson
	probweibull
	quanbeta
	quanbinomial
	quancauchy
	quanexp
	quanextremevalue
	quangamma
	quangeometric
	quanhypergeometric
	quaninvgaussian
	quanlogarithmic
	quanlogistic
	quanlogn
	quanmises
	quannegbin
	quanpareto
	quanpoisson
	quanweibull
	ranbeta
	ranbinomial
	ranbrownianmotion
	rancauchy
	ranchi
	randirichlet
	ranexp
	ranf
	ranextremevalue
	rangamma
	rangeometric
	rangh
	rangig
	ranhypergeometric
	ranindex
	raninvgaussian
	ranlogarithmic
	ranlogistic
	ranlogn
	ranmises
	ranmultinomial
	rannegbin
	ranpareto
	ranpoisson
	ranpoissonprocess
	ranshuffle
	ranstable
	ransubsample
	rant
	ranuorder
	ranweibull
	ranwishart

	11.4 QuadPack

	12 Class reference
	12.1 Database and Sample class
	12.1.1 Introduction
	12.1.2 Database and Sample overview
	12.1.3 Database and Sample function members
	Database::Append
	Database::Create
	Database::Database
	Database::DeSelect
	Database::DeSelectByIndex
	Database::DeSelectByName
	Database::Deterministic
	Database::Empty
	Database::FindSelection
	Database::ForceSelSample
	Database::ForceSelSampleByIndex
	Database::GetAll
	Database::GetAllNames
	Database::GetDateByIndex
	Database::GetDates
	Database::GetDbName
	Sample::GetFrequency
	Database::GetGroup
	Database::GetGroupLag
	Database::GetGroupLagNames
	Database::GetGroupNames
	Sample::GetIndex
	Database::GetIndexByDate
	Database::GetIndexByDates
	Database::GetMaxGroupLag
	Database::GetMaxSelLag
	Database::GetObsLabel
	Sample::GetPeriod1
	Sample::GetPeriod2
	Database::GetSample
	Database::GetSelEnd
	Database::GetSelStart
	Database::GetSelInfo
	Database::GetSelSample
	Database::GetSelSampleMode
	Sample::GetSize
	Database::GetVar
	Database::GetVarByIndex
	Database::GetVarChoices
	Database::GetVarChoicesByIndex
	Database::GetVarCount
	Database::GetVarIndex
	Database::GetVarNameByIndex
	Database::GetVarType
	GetVarTypeByIndex
	Sample::GetYear1
	Sample::GetYear2
	Database::Grow
	Database::Shrink
	Database::Info
	Database::IsDated
	Database::IsEmpty
	Database::Load
	Sample::ObsPeriod
	Sample::ObsYear
	Database::Recode
	Database::Remove
	Database::RemoveObsIf
	Database::Rename
	Database::Renew
	Database::RenewBlock
	Sample::Resample
	Database::Save
	Database::Select
	Database::SelectByIndex
	Database::SetDbName
	Database::SetDates
	Database::SetSelInfo
	Database::SetSelDates
	Database::SetSelSampleByDates
	Database::SetSelSampleByIndex
	Database::SetSelSampleMode
	Database::SetVar
	Database::SetVarChoices
	Database::SetVarChoicesByIndex
	Database::SetVarType
	Database::SetVarTypeByIndex
	Database::SortBy
	Database::Tabulate

	12.2 Modelbase : Database class
	12.2.1 Introduction
	12.2.2 Modelbase overview
	12.2.3 Modelbase function members
	Modelbase::ClearEstimation
	Modelbase::ClearModel
	Modelbase::Covar
	Modelbase::DbDrawTMatrix
	Modelbase::DoEstimation
	Modelbase::Estimate
	Modelbase::FindGroup
	Modelbase::FindMethod
	Modelbase::FixPar
	Modelbase::FreePar
	Modelbase::GetcDfLoss
	Modelbase::GetCovar
	Modelbase::GetCovarRobust
	Modelbase::GetcT
	Modelbase::GetcX
	Modelbase::GetcY
	Modelbase::GetcYlag
	Modelbase::GetForecastData
	Modelbase::GetFreePar
	Modelbase::GetFreeParCount
	Modelbase::GetFreeParNames
	Modelbase::GetGroupLabels
	Modelbase::GetLogLik
	Modelbase::GetMethod
	Modelbase::GetMethodLabel
	Modelbase::GetMethodLabels
	Modelbase::GetModelLabel
	Modelbase::GetModelStatus
	Modelbase::GetPackageName
	Modelbase::GetPackageVersion
	Modelbase::GetPar
	Modelbase::GetParCount
	Modelbase::GetParNames
	Modelbase::GetParStatus
	Modelbase::GetParTypes
	Modelbase::GetPrint
	Modelbase::GetResiduals
	Modelbase::GetResult
	Modelbase::GetResVar
	Modelbase::GetStdErr
	Modelbase::GetStdErrRobust
	Modelbase::GetX
	Modelbase::GetY
	Modelbase::Grow
	Modelbase::InitData
	Modelbase::InitPar
	Modelbase::IsUnivariate
	Modelbase::MapParToFree
	Modelbase::Modelbase
	Modelbase::Output
	Modelbase::OutputHeader
	Modelbase::OutputLogLik
	Modelbase::OutputMax
	Modelbase::OutputPar
	Modelbase::PrintTestVal
	Modelbase::ResetFixedPar
	Database::Select
	Database::SelectByIndex
	Modelbase::SetForecasts
	Modelbase::SetFreePar
	Modelbase::SetMethod
	Modelbase::SetModelStatus
	Modelbase::SetPar
	Modelbase::SetParCount
	Modelbase::SetPrint
	Modelbase::SetRecursive
	Modelbase::SetResult
	Modelbase::SetStartPar
	Modelbase::ShowBanner
	Modelbase::TestRestrictions

	12.3 PcFiml : Modelbase : Database class
	PcFiml function members

	12.4 PcFimlDgp class
	PcFimlDgp::Asymp
	PcFimlDgp::Create
	PcFimlDgp::DiscardZ
	PcFimlDgp::GenerateTo
	PcFimlDgp::GenerateU
	PcFimlDgp::GenerateV
	PcFimlDgp::GenerateY
	PcFimlDgp::GenerateZ
	PcFimlDgp::GenerateU_t
	PcFimlDgp::GenerateV_t
	PcFimlDgp::GenerateY_t
	PcFimlDgp::GenerateZ_t
	PcFimlDgp::GetU
	PcFimlDgp::GetV
	PcFimlDgp::GetY
	PcFimlDgp::GetZ
	PcFimlDgp::PcFimlDgp
	PcFimlDgp::Prepare
	PcFimlDgp::Print
	PcFimlDgp::SetDistribution
	PcFimlDgp::SetFixedZ
	PcFimlDgp::SetInit
	PcFimlDgp::SetU
	PcFimlDgp::SetV
	PcFimlDgp::SetY
	PcFimlDgp::SetZ
	PcFimlDgp::SetYParameter
	PcFimlDgp::SetZParameter
	PcFimlDgp::UseObsLoop

	12.5 PcNaiveDgp : RanPcNaive class
	PcNaiveDgp::DiscardZ
	PcNaiveDgp::Generate
	PcNaiveDgp::GenerateTo
	PcNaiveDgp::GenerateBreakTo
	PcNaiveDgp::GetU
	PcNaiveDgp::GetY
	PcNaiveDgp::GetZ
	PcNaiveDgp::PcNaiveDgp

	12.6 RanMC class
	RanMC::Choleski
	RanMC::CheckDist
	RanMC::RanDist
	RanMC::RanDist1
	RanMC::WriteDist

	12.7 RanPcNaive class
	RanPcNaive::Asymp
	RanPcNaive::GenerateTo
	RanPcNaive::GenerateBreakTo
	RanPcNaive::HasFixedZ
	RanPcNaive::GetFixedZValue
	RanPcNaive::RanPcNaive
	RanPcNaive::Print
	RanPcNaive::SetDistribution
	RanPcNaive::SetFixedZ
	RanPcNaive::SetFixedZValue
	RanPcNaive::SetInit
	RanPcNaive::SetNewFixedZValue
	RanPcNaive::SetUParameter
	RanPcNaive::SetYParameter
	RanPcNaive::SetYParameterEcm
	RanPcNaive::SetZCustom
	RanPcNaive::SetZParameter
	RanPcNaive::StoreInDatabase

	12.8 Simulator : SimulatorBase class
	Simulator::Generate
	Simulator::Plot
	Simulator::Prepare
	Simulator::SaveIn7
	Simulator::SaveRecIn7
	Simulator::SetCoefNames
	Simulator::SetTestNames
	Simulator::SetPlotRep
	Simulator::SetRecursive
	Simulator::SetStore
	Simulator::SetTwoSided
	Simulator::Simulate
	Simulator::Simulator

	13 Language reference
	13.1 Introduction
	13.2 Lexical conventions
	13.2.1 Tokens
	13.2.2 Comment

	13.3 Identifiers
	13.3.1 Keywords
	13.3.2 Constants
	13.3.2.1 Integer constants
	13.3.2.2 Character constants
	13.3.2.3 Double constants
	13.3.2.4 Null constants
	13.3.2.5 Matrix constants
	13.3.2.6 String constants
	13.3.2.7 Raw string constants
	13.3.2.8 Array constants

	13.4 Objects
	13.4.1 Types
	13.4.1.1 Type conversion

	13.4.2 Lvalue
	13.4.3 Scope

	13.5 External declarations
	13.5.1 Enumerations
	13.5.2 Storage class specifiers
	13.5.3 Type qualifiers
	13.5.4 External variable declarations
	13.5.5 Functions
	13.5.5.1 Function declarations
	13.5.5.2 Function definitions
	13.5.5.3 Returning a value
	13.5.5.4 Default values for function arguments
	13.5.5.5 Variable length parameter list
	13.5.5.6 Inline function definitions

	13.5.6 Classes
	13.5.6.1 Member function definitions
	13.5.6.2 Constructor and destructor functions
	13.5.6.3 public and protected members, structs
	13.5.6.4 The this reference and member scope
	13.5.6.5 Static members
	13.5.6.6 Derived classes
	13.5.6.7 Virtual functions

	13.6 Namespace
	13.7 Statements
	13.7.1 Selection statements
	13.7.2 Switch statements
	13.7.3 Iteration statements
	13.7.4 Jump statements
	13.7.5 Declaration statements
	13.7.6 try-catch block and throw
	13.7.7 Closed statement list
	13.7.8 Parallel programming
	13.7.8.1 Canonical for and foreach loops
	13.7.8.2 Parallel for and foreach loops

	13.8 Expressions
	13.8.1 Primary expressions
	13.8.1.1 Multiple assignment and multiple returns
	13.8.1.2 Lambda function

	13.8.2 Postfix expressions
	13.8.2.1 Member reference
	13.8.2.2 Function calls
	13.8.2.3 Spread operator
	13.8.2.4 Explicit type conversion
	13.8.2.5 Indexing vector and array types
	13.8.2.6 String indexing of array types
	13.8.2.7 Postfix incrementation
	13.8.2.8 Transpose

	13.8.3 Power expressions
	13.8.4 Unary expressions
	13.8.4.1 Prefix incrementation
	13.8.4.2 Unary minus and plus
	13.8.4.3 Logical negation
	13.8.4.4 Reference operator
	13.8.4.5 New and delete

	13.8.5 Multiplicative expressions
	13.8.5.1 Generalized inverse

	13.8.6 Additive expressions
	13.8.7 Concatenation expressions
	13.8.8 Relational expressions
	13.8.9 Equality expressions
	13.8.10 Logical dot-AND expressions
	13.8.11 Logical-AND expressions
	13.8.12 Logical dot-OR expressions
	13.8.13 Logical-OR expressions
	13.8.14 Conditional expression
	13.8.15 Assignment expressions
	13.8.16 Comma expression
	13.8.17 Constant expressions

	13.9 File inclusion and preprocessing
	13.9.1 Using folder names in Ox
	13.9.2 Search path in Ox
	13.9.3 File inclusion
	13.9.4 Import of modules
	13.9.5 Conditional compilation
	13.9.6 Pragmas

	13.10 Some differences with C and C

	III Appendix
	A1 Some matrix algebra

	References
	Subject Index

